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Abstract—Complex objects are usually with multiple labels, and can be represented by multiple modal representations, e.g., the

complex articles contain text and image information as well as multiple annotations. Previous methods assume that the homogeneous

multi-modal data are consistent, while in real applications, the raw data are disordered, e.g., the article constitutes with variable number

of inconsistent text and image instances. Therefore, Multi-modal Multi-instance Multi-label (M3) learning provides a framework for

handling such task and has exhibited excellent performance. However, M3 learning is facing two main challenges: 1) how to effectively

utilize label correlation and 2) how to take advantage of multi-modal learning to process unlabeled instances. To solve these problems,

we first propose a novel Multi-modal Multi-instance Multi-label Deep Network (M3DN), which considers M3 learning in an end-to-end

multi-modal deep network and utilizes consistency principle among different modal bag-level predictions. Based on the M3DN, we learn

the latent ground label metric with the optimal transport. Moreover, we introduce the extrinsic unlabeled multi-modal multi-instance

data, and propose the M3DNS, which considers the instance-level auto-encoder for single modality and modified bag-level optimal

transport to strengthen the consistency among modalities. Thereby M3DNS can better predict label and exploit label correlation

simultaneously. Experiments on benchmark datasets and real world WKG Game-Hub dataset validate the effectiveness of the

proposed methods.

Index Terms—Semi-supervised learning, multi-modal multi-instance multi-label learning, modal consistency, optimal transport

Ç

1 INTRODUCTION

WITH the development of data collection techniques,
objects can always be represented by multiple modal

features, e.g., in the forum of famous mobile game “ Strike of
Kings”, the articles are with image and content information,
and they belong to multiple categories if they are observed
from different aspects, e.g., an article belongs to “Wukong
Sun” (Game Heroes) as well as “golden cudgel” (Game
Equipment) from the images, while it can be categorized as
“game strategy”, “producer name” from contents and so on.
The major challenge for addressing such problem is how to
jointly model multiple types of heterogeneities in a mutually
beneficial way. To solve this problem, multi-modal multi-
label learning approaches utilize multiple modal informa-
tion, and require modal-based classifiers to generate similar
predictions, e.g., Huang et al. proposed a multi-label condi-
tional restricted boltzmann machine, which uses multiple
modalities to obtain shared representations under the super-
vision [1]; Yang et al. learned a novel graph-based model to
learn both label and feature heterogeneities [2]. However, a
real-world object may contain variable number of inconsis-
tent multi-modal instances, e.g., the article usually contains
multiple images and content paragraphs, in which each

image or content paragraph can be regarded as an instance,
yet the relationships between the images and contents have
not beenmarked as shown in Fig. 1.

Therefore, several Multi-modal Multi-instance Multi-label
methods have been proposed. Nguyen et al. proposed
M3LDA with a visual-label part, a textual-label part, and a
label topic part, in which the topic decided by visual informa-
tion and the topic decided by textual information should be
consistent [3]; Nguyen et al. developed a multi-modal MIML
framework based on hierarchical Bayesian network [4].
Nevertheless, there are two drawbacks of the existing M3
models. In detail, previous approaches rarely consider the
correlations among labels, besides,M3methods are all super-
vised methods, which violate the intuition of multi-modal
learning using unsupervised data.

Thus, considering the label correlation, Yang andHe stud-
ied a hierarchical multi-latent space, which can leverage the
task relatedness, modal consistency and the label correlation
simultaneously to improve the learning performance [5];
Huang and Zhou proposed the ML-LOC approach which
allows label correlation to be exploited locally [6]; Frogner
et al. developed a loss functionwith groundmetric for multi-
label learning, which is based on thewasserstein distance [7].
Previous works mainly assumed that there exists some prior
knowledge such as label similaritymatrix or the groundmet-
ric [7], [8]. In reality, semantic information among labels is
indirect or complicated, thus the confidence of the label simi-
larity matrix or ground metric is weak. On the other hand,
considering the labeling cost, there are many unlabeled
instances. The most important advantage of multi-modal
methods is that they use unlabeled data, e.g., co-training [9]
style methods utilized the complementary principle to label
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unlabeled data for each other; co-regularize [10] style meth-
ods exploited unlabeled multi-modal data with consistency
principle. Meanwhile, it is notable that previous proposed
M3 basedmethods are hard to adopt the unlabeled instances.
Therefore, another issue is how to bypass the limitation of
M3 stylemethods by using unlabeledmulti-modal instances.

In this work, aiming at learning the label prediction and
exploring label correlation with semi-supervised M3 data
simultaneously, we proposed a novel general Multi-modal
Multi-instance Multi-label Deep Network, which models the
independent deep network for each modality, and imposes
the modal consistency on bag-level prediction. To better con-
sider the label correlation,M3DNfirst adopts Optimal Trans-
port (OT) [11] distance to measure the quality of prediction.
The adoption provides a more meaningful measure in multi-
label tasks by capturing the geometric information of the
underlying label space. The raw data may not calculate the
raw ground metric confidently, thus we cast the label corre-
lation exploration as a latent ground metric learning prob-
lem. Moreover, considering the unlabeled data information,
we propose the semi-supervised M3DN (M3DNS). M3DNS
utilizes the instance-level auto-encoder to build the single
modal network, and considers the bag-level consistency
among different unlabeledmodal predictions with themodi-
fied OT theory. Consequently, M3DNS could automatically
learn the predictors from different modalities and the latent
shared groundmetric.

The main contributions of this paper are summarized in
the following points:

� Wepropose a novelMulti-modalMulti-instanceMulti-
label Deep Network (M3DN), which models the deep
independent network for each modality, and imposes
the modal consistency on bag-level prediction;

� We consider label correlation exploration as a latent
ground metric learning problem between different
modalities, rather than a fix groundmetric using prior
raw knowledge;

� We utilize the extrinsic unlabeled data, by consider-
ing instance-level auto-encoder, and the bag-level
consistency among different unlabeled modal predic-
tions with themodifiedOTmetric;

� We achieve superior performances on real-world
applications, comprehensively evaluate on the per-
formance and obtain consistently superior perform-
ances stably.

Section 2 summarizes related work, our approaches are
presented in Section 3. Section 4 reports our experiments.
Finally, Section 5 gives the conclusion.

2 RELATED WORK

The exploitation of multi-modal multi-instance multi-label
learning has attracted much attention recently. In this paper,
our method concentrates on deep multi-label classification
for semi-supervised inconsistent multi-modal multi-instance
data, and considers the label correlation using optimal trans-
port technique. Therefore, our work is related to M3 learning
and the optimal transport.

Multi-modal learning deals with data from multiple
modalities, i.e., multiple feature sets. The goals are to improve
performance and reduce the sample complexity. Meanwhile,
multi-modal multi-label learning has been well studied, e.g.,
Fang and Zhang proposed amulti-modal multi-label learning
method based on the largemargin framework [12]. Yang et al.
modeled both the modal consistency and the label correlation
in a graph-based framework [13]. The basic assumption
behind these methods is that multi-modal data is consistent.
However, in real applications, the multi-modal data are
always heterogeneous on the instance-level, e.g., articles have
variable number of inconsistent images and text paragraphs,
videos have variable length of inconsistent audio and image
frames. Articles and videos only have consistency on the bag
level, rather than instance level. Thus, multi-modal multi-
instance multi-label learning is proposed recently. Nguyen
et al. developed a multi-modal MIML framework based on
hierarchical Bayesian network [4]; Feng and Zhou exploited
deep neural network to generate instance representation for
MIML and it can be extended tomulti-modal scenario. Never-
theless, previous approaches rarely consider the confidence
of label correlation. More importantly, the current M3
approaches are supervised, which obviously lose the advan-
tage ofmulti-modal learning for processing unlabeled data.

Considering the label correlation, several multi-label
learning methods are proposed [15], [16], [17]. Recently,
Optimal Transport (OT) [11] is developed to measure the
difference between two distributions based on given
ground metric, and it has been widely used in computer
vision and image processing fields, e.g., Qian et al. proposed
a novel method that exploits knowledge in both data mani-
fold and feature correlation [18]; Courty et al. proposed a
regularized unsupervised optimal transportation model to
perform the alignment of the representations [19]. However,
previous works mainly assumed that prior knowledge for
cost matrix already exists, and ignored deficiency of infor-
mation or domain knowledge. Thus, Cuturi and Avis, Zhao
and Zhou suggested to formulate the cost metric learning
problem with the side information [20], [21]. On the other
hand, existing M3 methods are almost supervised methods,
while multi-modal methods aim to utilize the complemen-
tary [9] or consistency [10] principle using the unlabeled
instance. Thereby how to take unlabeled data into consider-
ation becomes a challenge.

Fig. 1. An illustration of the M3 (Multi-Modal Multi-instance Multi-label)
Data in an article of WKG Game-Hub. Each article is with context bag
and image bag, each bag contains variable number of instances (context
paragraphs/images), while each article has multiple label representa-
tions. It is notable that different modalities are heterogeneous, i.e., there
have no congruent relationships between the articles and images.
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3 PROPOSED METHOD

3.1 Notation

In the multi-instance extension of the multi-modal multi-
label framework, we are given N bags of instances, let Y ¼
fy1; y2; . . . ; yNl

g denotes the label set, yi 2 RL is the label

vector of i�th bag, where yi;j ¼ 1 denotes positive class, and
yi;j ¼ 0 otherwise. On the other hand, suppose we are given
K modalities, without any loss of generality, we consider
two modalities in our paper, i.e., images and contents. Let

D ¼ fð½X1
1;X

2
1�; y1Þ; ð½X1

2;X
2
2�;y2Þ; . . . ; ð½X1

Nl
;X2

Nl
�;yNl

Þ; ð½X1
Nlþ1;

X2
Nlþ1�Þ; . . . ; ð½X1

NlþNu
;X2

NlþNu
�Þg represents the training data-

set, where Nl=Nu denotes the number of labelled/unla-
belled instances. X1

i ¼ fx1i;1; x1i;2; . . . ; x1i;mi
g denotes the bag

representation of mi instances of X1
i , similarly, X2

i ¼ fx2i;1;
x2i;2; . . . ; x

2
i;ni
g is the bag representation of ni instances of X

2
i ,

it is notable that bags of different modalities may contain
variable number of instances.

The goal is to generate a learner to annotate new bags
based on its inputs X1;X2, e.g., annotate a new complex arti-
cle with its images and contents.

3.2 Optimal Transport

Traditionally, several measurements such as Kullback-Lei-
bler divergences, Hellinger and total variation, have been
utilized to measure the similarity between two distribu-
tions. However, these measurements play little effect when
the probability space has geometrical structures. On the
other hand, Optimal transport [11], also known as Wasser-
stein distance or earth mover distance [22], defines a reason-
able distance between two probability distribution over the
metric space. Intuitively, the Wasserstein distance is the
minimum cost of transporting the pile of one distribution
into the pile of another distribution, which formulates the
problem of learning the ground metric as minimizing the
difference between two polyhedral convex functions over a
convex set of distance matrices. Therefore, the Wasserstein
distance is more powerful in such situations by considering
the pairwise cost.

Definition 1 (Transport Polytope). For two probability vec-
tors r and c in the simplex

P
L, Uðr; cÞ is the transport polytope

of r and c, namely the polyhedral set of L� L matrices,

Uðr; cÞ ¼ fP 2 RL�L
þ jP1L ¼ r; P>1L ¼ cg:

Definition 2 (Optimal Transport).Given a L� L cost matrix
M, the total cost of mapping from r to c using a transport
matrix (or coupling probability) P can be quantified as hP;Mi.
The optimal transport (OT) problem is defined as,

dMðr; cÞ ¼ min
P2Uðr;cÞ

hP;Mi:

When M belongs to the cone of metric matrices M, the
value of dMðr; cÞ is a distance [11] between r and c, parame-
terized byM. In that case, assuming implicitly thatM is fixed
and only r and c vary, we will refer to the optimal transport
distance between r and c. It is notable that dMðr; cÞ is the cost
of the optimal plan for transporting the predicted mass dis-
tribution r to match the target distribution c. The penalty
increases whenmore mass is transported over longer distan-
ces, according to the groundmetricM.

Theorem 1. dM defined in Definition 2 is a distance on
P

L

wheneverM is a metric matrix [11].

3.3 Multi-Modal Multi-Instance Multi-Label Deep
Network (M3DN)

Multi-modal Multi-instance Multi-label (M3) learning pro-
vides a framework for handling the complex objects, and we
propose a novel M3 based parallel deep network (M3DN).
Based on the M3DN, we can bypass the limitation of initial
label correlation metric using the Optimal Transport (OT)
theory, and further take advantage of unlabeled data consid-
ering the modal consistency. In this section, we propose the
Multi-Modal Multi-instance Multi-label Deep Network
(M3DN) framework. M3DN models deep networks for dif-
ferentmodalities and imposes themodal consistency.

The raw articles contain variable number of heteroge-
neous multi-modal information, i.e., when no correspond-
ing relationships exist among each the contents and images,
it is difficult to utilize the consistency principle with previ-
ous multi-modal methods. Thus, we turn to utilize the con-
sistency among the bags of different modalities, rather than
the instance-level. Specifically, raw articles can be divided
into two modal bags of heterogeneous instances, i.e., the
image bag with 4 images and content bag with 5 text para-
graphs as shown in Fig. 2, while only the homogeneous
bags share the same multiple labels. Each instance x1ðx2Þ in
different modal bag can be calculated among several layers
and can be finally represented as xlp1ðxlp2Þ.

Without any loss of generality, we use the convolutional
neural network for images and the fully connected net-
works for text. Then, the output features are fully connected
with the bag-concept layer. All parameters including deep
network facts and fully connected weights can be organized
as Q1 ¼ ful1 ; ul2 ; . . . ; ulp1�1 ;W1gðQ2 ¼ ful1 ; ul2 ; . . . ; ulp2�1 ;W2gÞ.
Concretely, once the label predictions of the instances for a
bag Xv

i are obtained, we propose a fully connected 2D layer
(bag-concept layer) with the size of miðniÞ � L as shown
in Fig. 3, in which each column represents corresponding

Fig. 2. The flowchart of the M3DN, the raw articles can be divided into
two homogeneous modal bag with variable number of heterogeneous
instances, i.e., the image bag with four images and content bag with five
text paragraphs. The instances of different modalities can be calculated
with different deep networks, and finally represented as x1

lp
or x2

lp
, the

output features are fully connected with the labels, and we can get the
bag-concept layer for different modalities. Eventually, we can acquire
the final prediction by mean-max pooling the bag-concept layer of differ-
ent modalities.
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prediction of each instance in the image/content bag. For-
mally, for a given bag of instances Xv

i , the ðk; jÞth node in
the 2D bag-concept layer represents the prediction score
between the instance xvi;j and the k�th label. Therefore, the

j-column has the following form of activation:

ŷvj ¼ gðWvx
v
i;j þ bvÞ: (1)

Here, gð�Þ can be any convex activation function, and we use
softmax function here. In the bag-concept layer, we utilize the
row-wise max pooling: fvðiÞ ¼ maxðŷi;�Þ. The final prediction
value is:f ¼ f1þf2

2 .

3.4 Explore Label Correlation

However, fully connection to the label output rarely consid-
ers the relationship among labels. Recently, Optimal Trans-
port (OT) theory [11] is used in multi-label learning, which
captures geometric information of the underlying label space.
According to the Definitions 2 and 1, the loss function
implied in the parallel network structure can be formulated
without any loss of generality as:

min
Pv2UðfðXv

i
Þ;yiÞ

X2
v¼1

XN
i¼1
hPv;Mi

s:t: UðfðXv
i Þ; yiÞ ¼ fPv 2 RL�L

þ jPv1L ¼ fðXv
i Þ; P>v 1L ¼ yig;

(2)

where M is the shared latent cost matrix. However, this
method requires prior knowledge to construct the costmatrix
M. However, in reality, indirect or incomplete information
among labels leads toweak costmatrixM andpoor classifica-
tion performance.

Therefore, we can define the process of learning cost met-
ric as an optimization problem. Optimizing the cost metric
directly is difficult and it consumes OðL2Þ constraints. Thus,
[20], [21] proposed to formulate the cost metric learning
problem with the side information, i.e., the label similarity
matrix S as [21], and [20] has proved that the cost metric
matrixM, which computes corresponding optimal transport
distance dM between pairs of labels, agrees with the side
information. More precisely, this criterion favors matrix M,
in which the distance dMðr; cÞ is small for pairs of similar

histograms r and c (corresponding Sðr; cÞ is large) and large
for pairs of dissimilar histograms (corresponding Sðr; cÞ is
small). Consequently, optimizing M can be turned to opti-
mize the S. Finally, the goal of M3DN can be turned to learn
label predictor and explore label correlation simultaneously.

In detail, we first introduce the connection between non-
linear transformation and pseudo-metric:

Definition 3. With the nonlinear transformation ;ð�Þ, the
euclidean distance after the transformation can be denoted as:

D;ðr; cÞ ¼ k;ðrÞ � ;ðcÞk2:

And [23] proved that D; satisfies all properties of a well-
defined pseudo-metric in the original input space.

Theorem 2. For a pseudo-metric M defined in Definition 3 and
histograms r; c 2P

L, the function ðr; cÞ ! 1r6¼cdMðr; cÞ satis-
fies all four distance axioms, i.e., non-negativity, symmetry,
definiteness and sub-additivity (triangle inequality) as in [20].

Thus, M can be turned to learn the kernel S defined by
the non-linear transformation ;ð�Þ:

Sij ¼ Sðyi; yjÞ ¼ ;ðyiÞ>;ðyjÞ; (3)

where the yi represents the label vector of i�th instance.
Besides, it is notable that the cost matrix M is computed as
Mij ¼ D2

;ðyi; yjÞ, while the kernel S is defined as Eq. (3).
Thus, the relation betweenM and S can be derived as:

Mij ¼ Sii þ Sjj � 2Sij: (4)

The non-linear mapping preserves pseudo metric properties
in Definition 3, therefore it only needs a projection to posi-
tive semi-definite matrix cone when learning the kernel
matrix S. Thus, we can avoid the projection to metric space
which is complicated and costly. Therefore, we propose to
conduct the label predictions and label correlation explora-
tion simultaneously based on substituted optimal transport,
the combination of Eqs. (4) and (2) can be reformulated as:

min
S;Pv2UðfðXv

i
Þ;yiÞ

X2
v¼1

XN
i¼1
hPv;Mi þ �1rðS; S0Þ

s:t: UðfðXv
i Þ; yiÞ ¼ fPv 2 RL�L

þ jPv1L ¼ fðXv
i Þ; P>v 1L ¼ yig

S 2 Sþ; Mij ¼ Sii þ Sjj � 2Sij;

(5)
where �1 is a trade-off parameter, Sþ denotes the set of posi-
tive semi-definite matrix. We adopt OT distance as the loss
between prediction and groundtruth, and then incorporate
the groundmetric learning by kernel biased regularization in
2nd term, where �1rðS; S0Þ can be any convex regularization.
The regularizer Sþ � Sþ ! Rþ allows us to exploit prior
knowledge on the kernelized similar matrix, encoded by a
reference matrix S0. Since typically no strong prior knowl-
edge is available, we use S0 ¼ Y0 � Y. Following common
practice [24], we utilize the asymmetric Burg divergence,
which yields:

rðS; S0Þ ¼ trðSS�10 Þ � logdetðSS�10 Þ � p:

where p is the balance parameter, and we set as 1 in our
experiments.

Fig. 3. The schematic of the bag-concept layer. We can acquire the
bag-concept layer with the output feature representations of a bag of
instances, in which each column represents corresponding prediction
of each instance. Eventually, the final label prediction is calculated by
row-wise max pooling.
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3.5 Consider Unsupervised Data

M3DN provides a framework for handling complex multi-
modal multi-instance multi-label objects, and it considers
the label correlation as an optimization problem in Eq. (8).
The limitation of manual labeling is that, in real application,
it leaves over large number of unlabeled data. In other
words, unlabeled data is readily available, while labeled
data tends to be of smaller size. The basic intuition of multi-
modal learning is to utilize the complement or consistent
information of unlabeled data, to get better performance.
Yet M3DN leaves the unlabeled data without consideration,
and this obviously loses the advantage of multi-modal
learning. Consequently, how to extend M3DN to semi-
supervised scenario is an urgent problem.

To consider the extrinsic consistency, i.e., the unlabeled
information of different modalities, we propose a semi-
supervised M3DN (M3DNS) methods for learning each
modal predictors. Different from previous co-regularize
style methods using instance-level consistency principle,
M3 learning only has bag-level consistency among different
modalities, rather than instance-level consistency. Thus,
there exist two challenges in using unlabeled data in M3
learning: 1) how to utilize different modal instance-level
unlabeled data; 2) how to utilize different modal bag-level
consistency of unlabeled data.

To solve this problem, M3DNS utilizes the instance-level
unlabeled instances with auto-encoder and bag-level unla-
beled instances with modified OT. As shown in Fig. 4, since
different modal bags include various number of instances,
and the correspondences among different modal instances
are unknown, we turn to utilize the auto-encoder based net-
works to reconstruct the input instances for different modal-
ities, which can build more robust encoder networks. On the
one hand, bag-level correspondences are known, thereby
for the bag-level unlabeled data, we utilize modified OT
consistency term to constraint different modalities.

Specifically, each modal ordinal network can be replaced
by auto-encoder (AE) network, which minimizes the recon-
struction error of all the instances, i.e., auto-encoder CNN

for image modality and auto-encoder fully connected net-
work for content modality. Without any loss of generality,
AE can be formulated as square loss:

AEðxkÞ ¼ min
Qfv ;Qrv

XNu

i¼Nlþ1
kxiv � rvðfvðxivÞÞk2F ; (6)

where Qfv ;Qrv are the weight parameters of encoder net-
work fv and decoder network rv of the v�th modality.

On the other hand, Eq. (2) only utilizes the supervised
information, while neglect the unlabeledmodal bag-level cor-
respondences. Thus, with the unlabeled information, Eq. (2)
can be reformulated as:

min
Pv2U;P̂2Û

X2
v¼1

XNl

i¼1
hPv;Mi þ

XNu

i¼1
hP̂ ;Mi

s:t: U ¼ fPv 2 RL�L
þ jPv1L ¼ fðXv

i Þ; P>v 1L ¼ yig
Û ¼ fP̂ 2 RL�L

þ jP̂1L ¼ fðX1
i Þ; P̂>1L ¼ fðX2

i Þg;

(7)

where P̂ is the pseudo transportmatrix (or coupling probabil-
ity) for unlabeled data. The extra unlabeledmodal predictions
can be regarded as the pseudo labels in P̂ for constructing
more discriminative predictors. In detail, when learning one
modal predictor, the predictions of othermodalities can act as
the pseudo label, which can assist learning more discrimina-
tive predictors with unlabeled data. Thus M3DNS can well
utilize the bag-level consistency among different modalities.
Therefore, M3DNS can acquire more robust ground metric
M, which potentially utilizes the consistency between differ-
entmodal bags.

As a result, with the unlabeled information, we can com-
bine the Eq. (7) and (6). The semi-supervised M3DNmethod
(M3DNS) can be given as:

min
Pv2U;P̂2Û

X2
v¼1

XNl

i¼1
hPv;Mi þ

XNu

i¼Nlþ1
AEðxv

i Þ þ
XNu

i¼1
hP̂ ;Mi

þ �1rðS; S0Þ
s:t: U ¼ fPv 2 RL�L

þ jPv1L ¼ fðXv
i Þ; P>v 1L ¼ yig

Û ¼ fP̂ 2 RL�L
þ jP̂1L ¼ fðX1

i Þ; P̂>1L ¼ fðX2
i Þg

S 2 Sþ; Mij ¼ Sii þ Sjj � 2Sij:

(8)

3.6 Optimization

The P̂ is similarwith theP when considering the extramodal
predictions as the pseudo label. Thus, we analyze the optimi-
zation of the Eqs. (5) and (8) has similar solution. In detail,
The 1st term in Eq. (5) involves the product of predictors f
and cost matrix S, which makes the formulation not joint
convex. Consequently, the formulation cannot be optimized
easily.We provide the optimization process below:

Fix S, Optimize f1; f2. When updating f1; f2 with a fixed
S, the 2nd term of Eq. (5) is irrelevant to f1; f2, and the
Eq. (5) can be reformulated as follows:

min
Pv2UðfðXv

i
Þ;yiÞ

X2
v¼1

XN
i¼1
hPv;Mi

s:t: UðfðXv
i Þ; yiÞ ¼ fPv 2 RL�L

þ jPv1L ¼ fðXv
i Þ; P>v 1L ¼ yig:

(9)

Fig. 4. The flowchart of the M3DNS consider unlabeled data. Similar to
M3DN, the raw articles can be divided into two homogeneous modal
bags with variable number of heterogeneous instances. The instances
of different modalities can be calculated with different deep networks,
and finally represented as x1

lp
or x2

lp
. The output features of labeled data

are fully connected with the labels, while we add decoder networks for
each modality to process the unlabeled data. On the other hand, we can
get bag representations of all data from the bag-concept layer for differ-
ent modalities. Eventually, we can acquire the final predictions of differ-
ent modalities and calculate the semi-supervised loss.
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The empirical risk minimization function of Eq. (9) can be
optimized by stochastic gradient descent. However, it
requires to evaluate the descent direction for the loss, with
respect to the predictor f . Computing the exact subgradient
is quite costly, it needs to solve a linear program with OðL2Þ
constraints, which are with high expense with the L (the
label dimension) increase.

Algorithm 1. The Pseudo Code of Learning the Predictors

Input:

� Sampled Batch Dataset: f½X1
i ; X

2
i �; ygni¼1, kernelized

similar matric St, current mapping f1; f2
� Parameter: �
Output:

� Gradient of the target mapping: @L=@f1; @L=@f2
1: CalculateM  Eq. (4)
2: InitializeK ¼ expð��M � 1Þ,r  0
3: for v ¼ 1; 2 do
4: for i ¼ 1; 2; . . . ; n do
5: uv

i  1
6: while uv

i not converged do

7: uv
i  fvðxvi Þ�ðKðyvi �K>uv

i ÞÞ
8: end while

9: rfv  rfv þ loguv
i

� �
loguv

i
>1

�L � 1
10: end for
11: end for

Similar to [7], the loss is a linear program, and the sub-
gradient can be computed using Lagrange duality. There-
fore, we use primal-dual approach to compute the gradient
by solving the dual LP problem. From [25], we know that
the dual optimal a is, in fact, the subgradient of the loss of
training sample ðXv; yÞ with respect to its first argument fv.
However, it is costly to compute the exact loss directly.
In [26], Sinkhorn relaxation is adopted as the entropy regu-
larization to smooth the transport objective, which results in
a strictly convex problem that can be solved through Sink-
horn matrix scaling algorithm, at a speed that is faster than
that of transport solvers [26].

For a given training bag of instances ð½X1;X2�; yÞ, the dual
LP of Eq. (9) is:

dMðfvðXvÞ; yÞ ¼ max
a;b2CM

a>fðXv
i Þ þ by; (10)

where CM ¼ fa;b 2 RL : ai þ bj < Mi;jg.
Definition 4 (SinkhornDistance).Given a L� L cost matrix

M, and histograms ðr; cÞ 2P
L. The Sinkhorn distance is

defined as:

d�Mðr; cÞ ¼ min
P�2Uðr;cÞ

hP�;Mi

P� ¼ arg min
P2UðfðXv

i
Þ;yiÞ
hP;Mi � 1

�
HðP Þ;

(11)

where HðP Þ ¼ �PL
i¼1

PL
j¼1 pijlogpij is the entropy of P ,

and � > 0 is entropic regularization coefficient.
Based on the Sinkhorn theorem, we conclude that

the transportation matrix can be written in the form of

P
? ¼ diagðuÞKdiagðvÞ, where K ¼ expð��M � 1Þ is the

element-wise exponential of �M � 1. Besides, u ¼ expð�aÞ
and v ¼ expð�bÞ.

Therefore, we adopt the well-known Sinkhorn-Knopp
algorithm, which is used in [20], [26] to update the target
mapping fv given the ground metric. fv can be defined
as Eq. (1). The detailed procedure is summarized in
Algorithm 1, then with the help of Back Propagation
technique, gradient descent could be adopted to update
the network parameters.

Fix f1; f2, Optimize S.
When updating S with the fixed f1; f2, the sub-problem

can be rewritten as following:

min
S

X2
v¼1

XN
i¼1
hP;Mi þ �1rðS; S0Þ

s:t: K 2 Sþ; Mij ¼ Sii þ Sjj � 2Sij:
(12)

This sub-problem has closed-form solution. The differential
can be formulated as:

S ¼ ð �P þ S�10 � pÞ�1; (13)

where

�P ¼ �2Pij; when i 6¼ j;PL
k 6¼iðPik þ PkiÞ; when i ¼ j

(
:

Then, we project S back to positive semi-definite cone as:

S ¼ ProjðSÞ ¼ Umaxðs; 0ÞU>; (14)

where Proj is a projection operator, U and s correspond to
the eigenvectors and eigenvalues of S. The whole procedure
is summarized in Algorithm 2.

Algorithm 2. The Pseudo Code of M3DN

Input:

� Dataset: D ¼ f½X1
i ; X

2
i �; ygNi¼1

� Parameter: �1, �
� maxIter: T , learning rate: fatgTt¼1
Output:

� Classifiers: f1; f2
� Label similar matric: S;M

1: Initialize S0  Y0 � Y
2: while true do
3: Create Batch: Randomly pick up n examples from D

without replacement
4: Calculate Stþ1  Eqs. (13) and (14)
5: Calculate @L=@ft

1; @L=@f
t
2  Algorithm 1

6: Weight Propagation step: Obtain the derivative @ft
1=@Q1,

@ft2=@Q2;
7: Update parameters Q1;Q2

8: Functþ1obj  calculate obj. value in Eq. (5) with Ftþ1

9: if kFunctþ1obj � Functobjk � � or t � T then

10: Break;
11: end if
12: end while
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Eq. (8) can be easily optimized as M3DN with GCD
method. Without any loss of generality, in semi-supervised
scenario, the extra modal prediction fðX3�iÞ can be regarded
as the pseudo label similar to the y in the supervised term
when updating f1; f2. S can be updated in similar form,
where

�P ¼ �2ðPij þ P̂ijÞ; when i 6¼ j;PL
k 6¼iðPik þ Pki þ P̂ik þ P̂kiÞ; when i ¼ j

(
:

4 EXPERIMENTS

4.1 Datasets and Configurations

M3DN/M3DNS can learn more discriminative multi-modal
feature representation on bag level for supervised/semi-

supervised multi-label classification, while considering the
label correlation among different labels. Thus, in this section,
we provide empirical investigations and performance com-
parisons of M3DN on multi-label classification and label cor-
relation. Without any loss of generality, we experiment on 4
public real-world datasets, i.e., FLICKR25K [27], IAPR TC-
12 [28], MS-COCO [29] and NUS-WIDE [30]. Besides, we
experiment on 1 real-world complex article dataset, i.e., WKG
Game-Hub. FLICKR25K: consists of 25,000 images collected
from Flickr website, and each image is associatedwith several
textual tags. The text for each instance is represented as a
1386-dimensional bag-of-words vector. Each point is manu-
ally annotated with 24 labels. We select 23,600 image-text
pairs that belong to the 10 most frequent concepts; IAPR
TC-12: consists of 20,000 image-text pairs which annotate
255 labels. The text for each point is represented as a

TABLE 1
Comparison Results (Mean 	 std.) of M3DN/M3DNS with Compared Methods on Benchmark Datasets
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2912-dimensional bag-of-words vector; NUS-WIDE: contains
260,648 web images, and images are associated with textual
tags where each point is annotated with 81 concept labels.We
select 195,834 image-text pairs that belong to the 21 most fre-
quent concepts. The text for each point is represented as a
1000-dimensional bag-of-words vector; MS-COCO: contains
82,783 training, 40,504 validation image-text pairs which
belong to 91 categories. We select 38,000 image-text pairs that
belong to the 20 most frequent concepts. The text for each
point is represented as a 2912-dimensional bag-of-words vec-
tor; WKG Game-Hub: consists of 13,750 articles collected from
the Game-Hub of “ Strike of Kings” with 1744 concept labels.
We select 11,000 image-text pairs that belong to the 54 most
frequent concepts. Each article contains several images and
content paragraphs, and the text for each point is represented
as a 300-dimensionalw2v vector.

We run each compared method 30 times for all datasets,
and then randomly select 70 percent for training and the

remaining are for test. For all the training examples, we ran-
domly choose 30 percent as the labeled data, and the other
70 percent as unlabeled ones as [31]. For the 4 benchmark
datasets, each image is divided into 10 regions using [32] as
image bag, while the corresponding text tags are also sepa-
rated into several independent tags as text bag. For the
WKG Game-Hub dataset, each article is denoted as an
image bag and a content bag. The deep network for image
encoder is implemented the same as Resnet-18 [33]. We run
the following experiments with the implementation of an
environment on NVIDIA K80 GPUs server, and our model
can be trained around 290 images per second with a single
K80 GPGPU. In the training phase, the parameters �1 is
selected by 5-fold cross validation from f10�5; 10�4; . . . ;
104; 105g with further splitting on only the training datasets,
i.e., there is no overlap between the test set and the val-
idation set for parameter picking up. Empirically, when
the variation between the objective values of Eq. (13) is

TABLE 2
Comparison Results (mean 	 std.) of M3DN/M3DNS with Compared Methods on WKG Game-Hub Dataset

Six commonly used criteria are evaluated. The best performance for each criterion is bolded. " = # indicates the larger/smaller the better of the criterion.
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less than 10�6 in iteration, we treat M3DN or M3DNS
converged.

4.2 Compared Methods

In our experiments, first, we compare our methods with
multi-modal multi-instance multi-label methods, i.e., M3LDA
[3],MIMLmix [4]. Besides,M3DN can be degenerated into dif-
ferent settings, we also compare with multi-modal multi-label
methods, i.e., CS3G [34]; multi-instance multi-label methods,
i.e., DeepMIML [14],M3MIML [35],MIMLfast [36].Moreover,
we compare our methods with multi-label methods, i.e.,
SLEEC [37], Tram [38], ECC [39], ML-KNN [40], RankSVM
[41], ML-SVM [42]. Specifically, for multi-modal multi-label
methods, we calculate the average of all instances’ representa-
tions as the bag-level feature representation. In the multi-
instance multi-label methods, all modalities of a dataset are
concatenated together as a single modal input. As to the

multi-label learners, we first calculate bag-level feature repre-
sentation for differentmodalities independently, thenwe con-
catenate all modalities together as a single modal input. As to
the semi-supervised scenario, considering that existing M3
methods are supervised methods, we compare our methods
with semi-supervised multi-modal multi-label methods, i.e.,
CS3G [34]; and semi-supervised multi-label methods, i.e.,
Tram [38], COINS [17], iMLU [43].

4.3 Benchmark Comparisons

M3DN is compared with other methods on 4 benchmark
datasets to demonstrate the abilities. Results of compared
methods and M3DN/M3DNS on 6 commonly used criteria
are listed in Table 1. The best performance for each criterion
is bolded. " = # indicates that the larger/smaller, the better of
the criterion. From the results, it is obvious that our M3DN/
M3DNS approaches can achieve the best or second perfor-
mance on most datasets with different performance meas-
ures. Therefore the M3DN/M3DNS approach are highly
competitivemulti-modal multi-label learningmethods.

4.4 Complex Article Classification

In this subsection, M3DN approach is tested on the real-
world complex article classification problem, i.e., WKG
Game-Hub dataset. There are 13,570 articles in collection,
with image and text modalities to promote classification. Spe-
cifically, each article contains variable number of images and
text paragraphs. Thus, each article can be divided into both
image bag and text bag. Comparison results (independent
modalities and overall) against compared methods are listed
in Table 2, where notation “N/A” means the method cannot
give a result in 60 hours. We use the same 6measurement cri-
teria as in previous subsection, i.e., Coverage, Ranking Loss,
Average Precision, Macro AUC, example AUC and Micro
AUC. It is notable that multi-label methods concatenate all of
themodal features, which have no independentmodal classi-
fication performance. The results show that on both of the
independent modalities and overall prediction, our M3DN

Fig. 5. Illustration of learned label correlations for different datasets,
and the value has been scaled in [�1,1]. Red color indicates a positive
correlation, and blue one indicates a negative correlation.

Fig. 6. Objective function value convergence and corresponding classification performance (Coverage, Ranking Loss, Average Precision, Macro
AUC, example AUC, and Micro AUC) versus number of iterations of M3DN and M3DNS.
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Fig. 7. Sample test complex articles predictions of the WKG Game-Hub. Left is the image bag, the middle are label predictions, and the right is the
context bag.

TABLE 3
Semi-Supervised Comparison Results (Mean 	 std.) of M3DNS with Compared Methods on Four Benchmark Datasets

Six commonly used criteria are evaluated. The best performance for each criterion is bolded. " = # indicates the larger/smaller the better of the criterion.
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andM3DNS approaches can get the best results over all crite-
ria. The statistics validates the effectiveness of our method
when solving the complex article classification problem.

4.5 Label Correlations Exploration

SinceM3DN can learn label correlation explicitly, in this sub-
section, we examine effectiveness of M3DN in label correla-
tions exploration. Due to page limitation, the exploration is
conducted on the real-world dataset WKG Game-Hug. We
randomly sampled 27 labels, with the learned groundmetric
shown in Fig. 5, and scaled the original value in cost matrix
into ½�1; 1�. Red color indicates a positive correlation, and
blue indicates a negative correlation. We can see that the
learned pairwise cost accords with intuitions. Taking a few
examples, the cost between Overwatcha and Tencent indi-
cates a very small correlation, and this is reasonable as the
game Overwatch has no correlation with Tencent. While the
cost between (Zhuge Liang, Wizard) indicates a very strong
correlation, since Zhuge Liang belongs to the wizard role in
the game.

4.6 Empirical Investigation on Convergence

To investigate the convergence of M3DN iterations emp-
irically, we record the objective function value, i.e., the
value of Eq. (5) and the different criteria of classification

performance of M3DN/M3DNS in each epoch. Due to page
limits, results on WKG Game-Hug dataset are plotted in
Fig. 6. It clearly reveals that the objective function value
decreases as the iterations increase, and all of the classifica-
tion performance is stable after several iterations in Fig. 6.
Moreover, these additional experiment results indicate
that our M3DN/M3DNS can converge fast, i.e., M3DN con-
verges after 10 epoches.

4.7 Empirical Illustrative Examples

Fig. 7 shows 6 illustrative examples of the classification
results on WKG Game-Hub dataset. Qualitatively, illustra-
tion of the predictions clearly discovers the modal-instance-
label relation on the test set. E.g., the first example shows
that the article has separated three images and four content
paragraphs. We can predict the Zhuge liang, battlefront
labels from both the images and contents, and acquire the
master, cooperation labels form the context.

5 CONCLUSION

This paper focuses on the issues of complex objects classifica-
tion with semi-supervised M3 information, and extends our
preliminary research [44]. Complex objects, i.e., the articles,
the videos, etc, can always be represented by multi-modal

TABLE 4
Semi-Supervised Comparison Results (Mean 	 std.) of M3DNS with Compared Methods on WKG Game-Hub Dataset

Methods Coverage # (�103) Macro AUC " Ranking Loss # Example AUC " Average Precision " Micro AUC "
CS3G .326	.002 .683	.021 .187	.014 .812	.014 .404	.057 .728	.026
Tram 1.731	.083 .854	.031 .190	.024 .809	.024 .245	.046 .852	.024
COINS .186	.021 .782	.087 .252	.029 .747	.029 .195	.037 .783	.072
iMLU .225	.027 .786	.070 .288	.033 .711	.030 .169	.026 .763	.010
M3DNS .149	.002 .933	.001 .180	.009 .828	.003 .409	.001 .880	.001
Six commonly used criteria are evaluated. The best performance for each criterion is bolded. " = # indicates the larger/smaller, the better of the criterion.

TABLE 5
Ablation Study Results (Mean 	 std.) of M3DNS on Four Benchmark Datasets

Six commonly used criteria are evaluated. The best performance for each criterion is bolded. " = # indicates the larger/smaller the better of the criterion.
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multi-instance information, with multiple labels. However,
we usually only have bag-level consistency among different
modalities. Therefore, Multi-modal Multi-instance Multi-
label (M3) learning provides a framework for handling such
task. Meanwhile, previous M3 methods rarely consider label
correlation and unlabeled data. In this paper, we propose a
novel Multi-modal Multi-instance Multi-label Deep Network
(M3DN) framework, and exploit label correlation based on
the Optimal Transport (OT) theory. Moreover, considering
unlabel information, M3DNS utilizes the instance-label and
bag-level unlabel information for more excellent perfor-
mance. Experiments on the real world benchmark datasets
and special complex article datasetWKGGame-Hub validate
effectiveness of the proposed methods. Meanwhile, how to
extend tomultiplemodalities is an interesting futurework.

APPENDIX A
SEMI-SUPERVISED CLASSIFICATION

M3DNS takes unlabeled instances into consideration, i.e.,
using auto-encoder for singlemodal network, and consistency
among different modalities for joint predictions. Thus, in this

section, we provide empirical investigations and performance
comparisons of M3DNS with several state-of-the-art semi-
supervised methods. The introduction to data configuration
and comparison methods are in Sections 4.1 and 4.2. The
results are recorded in Tables 3 and 4. The results indicate that
M3DNS approach can achieve the best or second performance
on most datasets with different performance measures, thus
M3DNS canmake better use of unlabeled data.

APPENDIX B

ABLATION STUDY

In order to explore the impact of different operators in the net-
work structure, we conduct more experiments. In detail, 1) in
order to verify different pooling methods to get bag-level
prediction, we compare max pooling with mean pooling,
denoted as M3DNS-M with mean pooling; 2) based on the
better bag-level pooling method, we compare average predic-
tion with max prediction to evaluate different ensemble
methods for final predictions, denoted as M3DNS-MP with
max operator; 3) based on the better pooling method and

TABLE 6
Ablation Study Results (Mean 	 std.) of M3DNS on WKG Game-Hub Dataset

Methods Coverage # (�103) Macro AUC " Ranking Loss # Example AUC " Average Precision " Micro AUC "
M3DNS-F .279	.003 .821	.000 .183	.001 .822	.000 .345	.000 .872	.000
M3DNS-M .287	.041 .840	.000 .182	.001 .823	.000 .379	.001 .870	.002
M3DNS-MP .286	.008 .818	.000 .190	.001 .817	.001 .333	.000 .869	.002
M3DNS .149	.002 .933	.001 .180	.009 .828	.003 .409	.001 .880	.001
Six commonly used criteria are evaluated. The best performance for each criterion is bolded. " = # indicates the larger/smaller, the better of the criterion.

TABLE 7
Missing Modal Comparison Results (Mean 	 std.) of M3DNS on Four Benchmark Datasets

Six commonly used criteria are evaluated. The best performance for each criterion is bolded. " = # indicates the larger/smaller the better of the criterion.
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prediction operator, we fix the ground metric as the initial
value without any change to explore the advantage of learn-
ing ground metric, denoted as M3DNS-F. The results are
recorded in Tables 5 and 6. It is notable that M3DNS is with
max pooling, mean prediction operator. The results reveal
that max pooling are always better than the mean pooling in
getting bag-level prediction. This is because there are often
only a few positive examples in the bag that can represent the
prediction of this bag, yet mean pooling will bring a lot of
noise on the contrast. This phenomenon is also consistent
with the assumption of multi-instance learning. Furthermore,
the results reveal that mean prediction operator is always bet-
ter than the max operator, which is also according with the
ensemble learning methods. An interesting thing is that,
thoughM3DNS is better thanM3DNS-F onmost datasets, it is
worse on one dataset, i.e., FLICKR25K. This result shows that
learning groundmetric is not definitely effective. Considering
the noise data, it may affect the learning of ground metric.
Thus, how tomodify the learning process or design a suitable
initializationmethod could be an interesting futurework.

APPENDIX C

COMPARISON WITH MISSING MODALITY

Specifically, in order to explore the impact of modal missing
scenario, we conduct more experiments. Following [45], in
each split, we randomly select 10 to 90 percent of examples,
with 20 percent as interval, for homogeneous examples with
complete modality. And the remaining are incomplete
instances. The results are recorded in Tables 7 and 8. It shows
that M3DNS achieves competitive results when comparing
the results in Tables 1, 2, 5, and 6 with missing modalities,
and the performance of M3DNS increases faster than com-
paredmethods as incomplete ratio decreases.
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