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Abstract—Class-Incremental Learning (CIL) aims to train a reliablemodel with the streaming data, which emerges unknown classes

sequentially. Different from traditional closed set learning, CIL has twomain challenges: (1) Novel class detection. The initial training data only

contains incomplete classes, and streaming test datawill accept unknown classes. Therefore, themodel needs to not only accurately classify

known classes, but also effectively detect unknown classes; (2)Model expansion. After the novel classes are detected, themodel needs to be

updatedwithout re-training using the entire previous data. However, traditional CILmethods have not fully considered these two challenges.

First, theyare always restricted to single novel class detectionwithin each phase and embedding confusion caused by unknown classes.

Besides, they ignore the catastrophic forgetting of known categories inmodel update. To this end, we propose a semi-supervised styleClass-

Incremental Learningwithout Forgetting (CILF)method, which aims to learn adaptive embedding for processing novel class detection and

model update in a unified framework. In detail, CILF designs to regularize classificationwith decoupled prototype based loss, which can improve

the intra-class and inter-class structure significantly, and acquires a compact embedding representation for novel class detection in result. Then,

CILFemploys a learnable curriculum clustering operator to estimate the number of semantic clusters via fine-tuning the learned network, in

which curriculumoperator can adaptively learn the embedding in self-taught form. Therefore, CILF can detectmultiple novel classes and

mitigate the embedding confusion problem. Last, with the labeled streaming test data, CILF can update the networkwith robust regularization to

mitigate the catastrophic forgetting. Consequently, CILF is able to iteratively performnovel class detection andmodel update.Weverify the

effectiveness of our model on four streaming classification tasks, and empirical studies show the superior performance of the proposedmethod.

Index Terms—Class-incremental learning, Novel class detection, incremental model update

Ç

1 INTRODUCTION

MOST traditional machine learning methods assume that
the training and testing data share the same label

space, and various methods have achieved significant

success in different applications [1], [2], [3], [4], [5]. How-
ever, many applications are non-stationary considering that
the real-world is dynamically changing, which causes
unknown classes emerge sequentially when processing the
streaming data. For example, driverless cars need to identify
unknown objects in the received streaming images, face rec-
ognition needs to distinguish unseen personal pictures in the
received monitoring image and so on. This is defined as
Class-Incremental Learning (CIL) in literature. In detail, as
shown in Fig. 1, CIL includes two pivotal tasks: novel class
detection (NCD) and incremental model update (IMU). The
main difficulty of NCD is to effectively distinguish known
and unknown classes as shown in Fig. 1a. Meanwhile, the
IMU aims to update the model with newly labeled instances
from unknown classes after novel class detection as shown
in Fig. 1b, in which the main difficulty is the forgetting of
known classes when updating model. CIL needs to conduct
the NCD and IMU iteratively with the streaming data.

To address the NCD issue, zero-shot learning (ZSL) is first
proposed [6], [7], which aims to classify instances from
unknown categories by merely utilizing seen class examples
and semantic information about unknown classes. However,
the basic assumption behind the standard ZSL methods is that
test data only contain unknown classes. Thereby, generalized
zero-shot learning (GZSL) [8], [9], [10] is proposed, in which
the test data include known and unknown classes simulta-
neously.Nevertheless, bothZSL andGZSL assume that seman-
tic information (for example, attributes or descriptions) of the
unknown classes is given during training phase, which is lim-
ited to detect with prior knowledge. To solve this problem,
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recent NCD approaches attempt to detect unknown classes by
designing robust models, which can mainly be divided into
two aspects: discriminative and generativemodels.Discrimina-
tive models mainly utilize the powerful feature learning and
prediction capabilities of deepmodels to design corresponding
distance or prediction confidence measures [11], [12]. On the
other hand, Generative models mainly employ the adversarial
learning to generate instances that can fool the discriminative
model, thereby to detect the novel classes [13]. However, as
shown in Fig. 2, it is notable that known and unknown classes
have strong separability on the trained model in simple visual
datasets such as MNIST (i.e., Figs. 2a and 2c), thereby the dis-
criminative and generative models are effective, yet in more
complex visual datasets such as CIFAR-10 (i.e., Figs. 2b and
2d), unknown and known categories have embedding confu-
sion in feature space, i.e, instances of unknownandknown clas-
ses are mixed, which will greatly weaken the performance of
discriminative and generative methods. Besides, most existing
detection methods are limited to detect single novel class,
which is contrary to real applications.

Furthermore, we need incremental model update (IMU)
with the newly labeled instances of novel classes after
detecting. Different from re-training with all previous
known data, IMU aims to re-train the model referring none
or only limited known data, which can ensure the efficiency
of incremental update. Therefore, a big challenge for IMU is
the catastrophic forgetting phenomenon [14], i.e., it is obvi-
ous that the knowledge learned from the previous task
(known classes classification) will be lost when information
relevant to the current task (novel class classification) is
incorporated. To mitigate the catastrophic forgetting, there
are many attempts, including replay-based methods that
explicitly re-train on stored examples while training on new
tasks [15], [16], and regularization-based methods that uti-
lize extra regularization term on output or parameters to
consolidate previous knowledge [17], [18], [19].

To consider the NCD and IMU tasks simultaneously, we
propose a Class-Incremental Learning without Forgetting
(CILF) method, which aims to process novel class detection
and model update iteratively. In detail, CILF initially devel-
ops a novel decoupled prototype based network to train the
known classes with supervised data, which employs the con-
strained clustering loss to regularize the inter-class and intra-
class structure. In testing, considering emergence of unsuper-
vised single or multiple novel classes, we develop the curric-
ulum operator for learning adaptive embedding, which aims
to conduct learnable clustering to overcome the embedding

confusion problem. Then, with the limited memory data
of supervised known classes and newly labeled data of
unknown classes, CILF updates the network with robust reg-
ularization to mitigate the catastrophic forgetting. In sum-
mary, themain contributions are summarized as follows:

� Propose the “ Class-Incremental Learning without
Forgetting” (CILF) framework, which considers both
NCD and IMU tasks;

� Propose a novel decoupled prototype based net-
work, which can conduct novel class detection and
model update effectively;

� Propose the curriculum clustering operator for better
multiple novel classes detection and robust regulari-
zation to mitigate catastrophic forgetting.

2 RELATED WORK

Our work aims to detect novel classes in streaming data,
and update the model with limited known data without for-
getting. Therefore, our work is related to: novel class detec-
tion and incremental model update.

Traditional novel class detection approaches mainly
restrict intra-class and inter-class distance property in training
data, then detect novel class by identifying outliers. For exam-
ple, Da et al. developed a SVM-based method, which learned
the concept of known classes while incorporating the struc-
ture presented in the unlabeled data collected from open
set [20]; Mu et al. proposed to dynamically maintain two low-
dimensional matrix sketches for detecting novel classes [21].
However, these approaches are difficult to process high
dimensional space considering complex matrix operations.
Recently, with the development of deep learning techniques,
several studies have applied convolutional neural network
(CNN) on the detection scenario. Hendrycks andGimpel veri-
fied that CNN trained on the MNIST images can predict high
confidence (90%) on gaussian noise instances, thus the

Fig. 1. (Best view in color) Schematic of class-incremental learning.
Unknown categories occur with the streaming data, (a) the model first
detects novel class with pre-trained model; (b) the model is then updated
with newly labeled instances from unknown classes, without or with lim-
ited examples from known classes.

Fig. 2. (Best view in color.) T-SNE of discriminative model (DM) [18] and
generative model (GM) [17] on simple (MNIST) and complex (CIFAR-10)
datasets. 0� 6 in legend denotes different classes in two datasets. In
detail, we train the two models with five classes (i.e., 0-4) in the training
stage, then utilize the pre-trained model to achieve the feature embed-
dings of data from two unknown classes (i.e., 5, 6) and all known classes
(i.e., 0-4) appearing in the testing stage, and give the T-SNE in (a)-(d).
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softmax output probabilities can be used to distinguish
known/unknown class [22]. Furthermore, Liang et al. directly
utilized temperature scaling or added small perturbations to
separate the softmax score distributions between in- and out-
of-distribution images [23]; Neal et al. introduced a novel aug-
mentation technique, which adopted an encoder-decoder
GAN architecture to generate the synthetic instances similar
to known class [17];Wang et al. proposed a CNN-based proto-
type ensemble method, which adaptively update the proto-
type for robust detection [18]. Nevertheless, these methods
are always limited to detect single novel class at one time.
Therefore, Han et al. proposed an extended deep transfer
embedded clustering method for multiple novel class detec-
tion [24]. However, existingNCDmethods usually have supe-
rior detection performance on simple datasets, but are easily
interfered by embedding confusion on complex datasets.

Incremental learning is always applied for streaming data.
In most situations, only a few examples from known classes/
features/distributions are available in the beginning, and data
with new classes/features/distributions emerge thereafter.
Incremental learning methods aim to update the models from
streaming data sequentially only with newly coming data and
limited previous data, without re-training with all previous
data [25]. As a matter of fact, incremental deep learning can
directly apply with online backpropagation, yet with one
important drawback: catastrophic forgetting, which is the ten-
dency for losing the learned knowledge of previous distribu-
tion (previously known classes/features/distributions). To
solve this problem, there are many attempts, for example,
Rebuffi et al. stored a subset of examples per class, which are
selected to best approximate the mean of each class in the fea-
ture space [15], Lopez-Paz andRanzato projected the estimated
gradient direction on the feasible region outlined by previous
tasks through a first order Taylor series approximation [26]; Li
and Hoiem utilized the output of previous model as soft labels
for previous tasks [27]; Kirkpatrick et al. proposed the elastic
weight consolidation to reduce catastrophic forgetting [28]; Lee
et al. proposed to incrementally match themoment of posterior
distribution of the neural network [29].

3 PROPOSED METHOD

In this section, we formalize the problem of class-incremen-
tal learning with streaming data, and give the details of pro-
posed framework.

3.1 Problem Definition

Without any loss of generality, at initial time, we have a
supervised training set D0 ¼ fðx0

i ;y
0
i ÞgNi¼1, where x0

i 2 Rd

denotes the i�th instance, and y0
i 2 Y 0 ¼ f1; 2; . . . ; Cg

denotes the corresponding label, 0 represents initial time.
Then, we receive a non-stationary unlabeled testing data
D1 ¼ fðxjÞgN1

j¼1, where xj 2 Rd denotes the j�th instance,
and label yj 2 Ŷ ¼ f1; 2; . . . ; C; C þ 1; . . . ; C þK1g is
unknown, K1 is the number of unknown classes. Thus,
novel class detection can be defined as:

Definition 1 Novel Class Detection (NCD). With the ini-
tial training set D0, we aim to construct a model, i.e., f0 :
X0 ! Y 0. Then NCD aims to classify the known and unknown
classes inD1 accurately with the pre-trained model f0.

On the other hand, it is notable that streaming data with
novel classes has two characteristics: (1) Data window. At
timewindow t, we only get the data of current timewindow,
not the full amount of streaming data for detection; and (2)
Novel class continuity. At time window t, an indeterminate
number of novel classes will appear, or even no novel class.
Therefore, we need to incrementally detect novel classes, i.e.,
with the streaming data, every time after receiving the data
of time window t, NCD is performed [30]. Specifically, the
streaming test dataD can be denoted as D ¼ fDtgTt¼1, where
Dt ¼ fxt

jgNt
j¼1 hasNt unlabeled instances, and the underlying

label yt
j 2 Ŷ t is unknown, Ŷ t ¼ Ŷ t�1 [ Y t, where Ŷ t�1 is the

cumulative known classes until ðt� 1Þ�th time window and
Y t is the new classes in t�th window. Ŷ T ¼ Ŷ ¼ f1; 2; . . . ;
C;C þ 1; . . . ; C þKg. Therefore, we can give the definition
of class-incremental learning:

Definition 2 Class-Incremental Learning (CIL). At time
t 2 f1; 2; . . . ; Tg, we have pre-trained model ft�1, finite stored
instance set Mt�1 from known classes and received streaming
dataDt. First, CIL aims to classify known and unknown classes
in Dt as Definition 1. Then, CIL updates the model while miti-
gating forgetting to acquire ft with the newly labeled data from
novel classes and stored data Mt�1. Cycle this process until
terminated.

Note that there exist two labeling cases after novel class
detection, i.e., manual labeling and self-taught labeling [21].
Actually, manual labeling reduces the generation of label
noise compared to self-taught labeling, so it is more condu-
cive to the incremental update of the model. However, con-
sidering the cost and time overhead of manual labeling,
labeling a large number of instances will affect the efficiency
of the model. Considering the fairness of comparison meth-
ods, we adopt the setting of manual labeling following most
approaches [18], [21], [30]. In addition, in view of the prob-
lems of manual labeling, techniques such as random sam-
pling can be used to reduce labor and time costs. In the
experiment Section 4.6, we also verify the performance of
the model under different number of instance queries.

3.2 CILF Framework

The main idea of CILF is to learn the feature embeddings
such that instances exhibit distinguishing characteristics for
label prediction, novel class detection, and subsequent
model update over the non-stationary streaming data. There-
fore, the most critical parts of CILF are: (1) feature embed-
ding network, (2) novel class detection operator, and (3)
model updatemechanism.

� Feature Embedding Network: With the initial training
data, i.e., the blue and orange dots shown in Fig. 3,
the decoupled neural network model is trained using
the labeled initial data with the prototype based loss,
which concerns the intra-class/inter-class structure
and can be easily transformed for NCD;

� Novel Class Detection Operator: At time t, we receive a
set of unlabeled examples from the streaming data
source, i.e., the gray dots shown in Fig. 3, which
includes known (blue and orange dots) and unknown
(green dots) classes. The observed instances setDt are
transformed through learned network, and achieve
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feature representations. Then we employ the pre-
trained ft�1 for curriculum clustering, which can
detect multiple unknown classes from easy to diffi-
cult in self-taught form;

� Model Update Mechanism: After NCD, true labels of
instances from novel classes are queried (partially or
fully), then IMU is performed on ft�1 with the newly
labeled data, while regularizing the performance of
stored data from known classes to mitigate for-
getting. The updated model is then used to further
classify incoming instances along the stream.

This process is repeated until the end of streaming data.
Fig. 3 illustrates the overall streaming data classification
process performed by CILF framework. And Table 1 pro-
vides the definition of symbols used in this paper.

3.3 Feature Embedding Network

Given the initial training dataD0, our primary objective is to
build an effective model f0 for subsequent classification.
Recent researches have demonstrated the effectiveness of
deep model on feature embedding and subsequent tasks,
thereby we employ the deep models for building f0, for
example, convolution neural networks for images. Impor-
tantly, the built deep model needs to consider two
aspects [31]: (1) Distance measure. The model needs to
emphasize the exploitation of feature embeddings consider-
ing intra-class compactness and inter-class separability, thus
leaves larger space for novel class detection; (2) Model scal-
ability. The model needs to effectively learn novel class
knowledge and incrementally update model with the emer-
gent novel class data. Nevertheless, traditional cross entropy
based deep models rarely consider the distance measure-
ment, and are difficult to conduct the model update consid-
ering that the prediction layer is coupled to the fully
connected layer [18]. Consequently, we develop a decoupled
deep embedding network with prototype based loss to
improve the inter-class and intra-class structure.

Particularly, for a given input x0
i , the output feature rep-

resentations are denoted as f0ðx0
i ; uÞ, u is the correspond net-

work parameters, and we utilize notation f0ðx0
i Þ for brevity.

Inspired from the topic of metric learning [32], the loss can
be defined as:

L ¼ Lintra þ �Linter; (1)

where Lintra aims to pull data towards their same-class
neighbors, and Linter aims to push data from different clas-
ses away with each other. � is the hyperparameter.

3.3.1 Intra-Class Compactness

Lintra can be obtained by calculating the distance between
each instance and corresponding prototype, here we utilize
the class center. Similar to cross entropy loss [33], i.e.,PN

i¼1 �yilogðgðfðxi; uÞÞÞ, where yi is the ground truth of
i�th instance, gð�Þ denotes the fully connected layer with
softmax function. Lintra is developed on the feature output
f0ðx0Þ. Consequently, we define the prototype-based cross
entropy loss as following:

Lintra ¼
XN
i¼1

XC
c¼1

�y0ic logðp0icÞ; (2)

where p0ic is the probability of x0
i being classified as y0c , which

is negatively related to the distance between instance and
prototype of c�th class, i.e., the probability is larger if the dis-
tance is closer, vice versa. Therefore, p0ic / �kx0

i � m0
ck22,

where m0
c is the representations of c�th class prototype, can

be defined as following:

p0ic ¼
expð�akf0ðx0

i Þ � m0
ck22ÞPC

m¼1 expð�akf0ðx0
i Þ � m0

mk22Þ
; (3)

where C is the class number, and a is a hyperparameter that
controls the strength of distance similar to large margin
cross-entropy [34]. Note that Eq. (3) minimizes loss via max-
imizing the probability of x0

i being associated with the pro-
totype m0

yi
. Moreover, it is crucial to initialize and update

each class prototype effectively. The labels of initial training
data D0 are provided, thereby we use the output representa-
tion f0ðx0Þ , for each prototype initialization:

m0
c ¼

1

jpcj
X
x02pc

f0ðx0Þ;

Fig. 3. Overview of the CILF framework. The blue and orange dots are
initial training data for developing the deep network. While the gray dots
are unlabeled testing data of t�th time window, which are received from
the streaming data. With the trained deep network, CILF aims to classify
the known and novel classes, then query the ground-truths of novel class
instances for updating the network continuously.

TABLE 1
Description of Symbols

Sym. Definition

D0 ¼ fðx0
i ;y

0
i ÞgNi¼1 initial supervised training data

Dt ¼ fxt
jgNt

j¼1 set of unlabeled data at t�th time window
Dt

new set of labeled new class data at time t

Ŷ t label set at t�th time window
ft trained model t�th time window
Y t the new class set at t�th time window
Kt the size of new class set at

t�th time window
Mt stored memory data of known classes

until t�th time window
ftðxÞ feature embedding of instance x
pti prediction of i�th instance at time t

mt
c prototype of c�th class at time t

wt
j weight of each instance at time t

gðlÞ pacing function to determine the number of
selected instances in each mini-batch
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where jpcj is the size of c�th class. On the other hand, the
key idea of prototype update is to anneal clusters slowly, so
that eliminates the biased instances in each mini-batch.
Thus we propose to smoothen the annealing process via
temporal ensemble [35]:

m0e
c ¼ bm0e�1

c þ ð1� bÞm0e
c (4)

where b is a momentum term controlling the ensemble, and
0e indicates the e�th epoch for the initial training.

3.3.2 Inter-Class Separability

The prototype-based cross entropy loss guarantees the local
intra-class compactness, while neglects the inter-class sepa-
rability. To make the projection of instances robust in dis-
tance measure, Linter focuses on improving global separation
between different classes. Particularly, Linter aims to trans-
form instances from the same classes to be closer than those
from different classes, i.e., dðf0ðx0

i Þ; f0ðx0
pÞÞ < dðf0ðx0

i Þ;
f0ðx0

nÞÞ, where x0
i ;x

0
p share the same class and x0

n is from a
different class, dðf0ðx0

i Þ; f0ðx0
j ÞÞ is a metric function measur-

ing distance in the embedding space, and we use notation
di;j for clarity. The distance is known as the triplet loss with
a pre-specified margin value m, i.e.,

�
mþ di;p � di;n

�
þ ¼

maxf0;mþ di;p � di;ng. It is notable that triplet loss always
suffers from slow convergence, thus triplet construction is
central for improving the performance [36], [37]. Inspired
by [38], [39], we consider the hard triplet to fully explore
multiple negative examples from different classes in each
mini-batch, which can further improve the inter-class distan-
ces. In result, hard triplet of i�th instance is denoted as:

Vi ¼ ðx0
i ;x

0
p;x

0
n1
; . . . ;x0

nC�1Þ; (5)

where negative examples xnc are randomly sampled from
C � 1 different classes, and positive example xp is randomly
sampled from the same category. Specifically, the relation-
ship between hard triplet and triplet can be described as fol-
lows: each hard triplet Vi contains C � 1 triplets, sharing
the same positive pair ðx0

i ;x
0
pÞ. Thereby, the triplet con-

straint can be generalized to the hard triplet as follows: 8c ¼
1; 2; . . . ; C � 1, the dðf0ðx0

i Þ; f0ðx0
pÞÞ < dðf0ðx0

i Þ; f0ðx0
nc
ÞÞ,

which can better consider the global inter-class distances.
Thereby the Linter can be defined as:

Linter ¼
XN
i¼1

mþ di;p � min
x0nc2Vi

di;nc

" #
þ
; (6)

where Vi denotes the hard triplet set of i�th instance. Here
we utilize euclidean distance to evaluate the distance between
two examples:

di;j ¼ kf0ðx0
i Þ � f0ðx0

j Þk22: (7)

Consequently, we can learn discriminative feature embed-
ding, and boost the performance of classification and detec-
tion via optimizing Eq. (1) from two perspectives: (1)
Prototype-based loss highlights the compactness of repre-
sentation, i.e., the intra-class would be more compact and
inter-class would be more distant. This property is suited
for distinguishing the known and unknown classes. (2)

Prototype-based loss is based on the feature output embed-
ding, which is independent of the prediction layer. There-
fore, it is easy to update the model and learn novel classes,
without the expansion of model structure (prediction layer).
The details are shown in Algorithm 1.

Algorithm 1. Feature Embedding Network

� Input:
� Data set:D0 ¼ fðx0

i ;y
0
i ÞgNi¼1

� Parameter: �, a, Learning rate parameter: h

� Output:
� Decoupled deep clustering network: f0

1: Initialize model parameters u;
2: Initialize the prototype m for each class;
3: while stop condition is not triggered do
4: for instance mini-batch do
5: Calculate Lintra according to Eq. (2);
6: Calculate Linter according to Eq. (6);
7: Calculate loss L ¼ Lintra þ �Linter according to Eq. (1);
8: Update model parameters using gradient descent;
9: end for
10: Update the prototype m according to Eq. (4);
11: end while

3.4 Novel Class Detection

Traditional closed-set methods predict the known classes of
training phase, inwhich the number of possible labels at test-
ing is known and fixed. However, in class-incremental set-
ting, instances belonging to unknown classes may appear
with the streaming test data [30]. Therefore, we need to dis-
tinguish known and unknown classes. Specifically, we
receive a set of unlabeled dataDt at t�th time, and theremay
occur Kt novel classes, where Kt � 0. However, most cur-
rent detection methods either assume that only one novel
class appears per time [21], [40], i.e.,Kt ¼ 1, or classifymulti-
ple novel classes into a super-class [18], which is impractical
and difficult to operate efficiently. To solve this problem, we
aim to fine-tune the deep clustering network ft�1 of last time
for multiple novel class detection. As shown in Fig. 2, a key
challenge is that adversarial instances of novel classes are
mixed with known classes in a complex scenario, leading to
embedding confusion and greatly affecting the clustering
effect, i.e., biased prototypes for known and unknown clas-
ses. To solve this problem,we employ a learnable curriculum
clustering operator, which aims to conduct clustering from
easy (distinguishable) to difficult (confused) instances via
curriculum learning [41], [42], [43]. Curriculum learning is
related to self-paced learning [44], but relies on the ranking
of training points by their difficulty with respect to target
hypothesis rather than current hypothesis, and is more bene-
ficial [45]. Consequently, we can acquire more reliable proto-
type and novel class detection results.

In detail, considering that themodel training inAlgorithm
1 is entirely supervised, whereasDt is unsupervised, we aim
to discover novel classes in Dt by unsupervised clustering,
which fine-tunes the ft�1 trained during ðt� 1Þth phase with
easy instances first, and then cluster the mixed ones. We
address this challenge by decomposing the learnable curric-
ulum clustering into two closely related sub-tasks in
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curriculum learning [45]: 1)weighting function to calculate the
weight of each instance, and initialize the prototype with
weighted k-means; and 2) pacing function to determine the
pace for which data are presented to fine-tune the model,
thus conduct curriculum clustering.

3.4.1 Weighting Function

Inspired by [45], we evaluate the weight of each instance by
self-taught weighting function. In detail, we compute confi-
dence score for each instance xt

j in Dt using existing model
ft�1. We first obtain the statistic confidence by applying intra-
class distance using Eq. (2), i.e., ut

j ¼
PŶ t�1

c¼1 �yt�1
jc

logðptjcÞ. It is
notable that ut

j of the instances near prototype are smaller,
and ut

j of the instances away from all class prototypes are
larger. Therefore, the weight of each instance can be denoted
as wt

j ¼ ðutj � gÞ2, where g is the threshold parameter.
Thereby the highly confident instances of known and
unknown classes have larger weights (i.e., the instances near
prototype or away from all class prototypes), and confusing
ones have lowerweights.

On the other hand, Algorithm 1 requires initial setting for
prototypes mt

c; c 2 Ŷ t. Thus we initialize prototypes by run-
ning semi-supervised weighted k-means algorithm [46]
combing the unlabeled setDt and pre-trained mt�1

c . In result,
we can obtain more robust initial prototypes:

mt
c ¼

bmt�1
c þ ð1� bÞPxt

j
2pc

wt
j
ft�1ðxt

j
ÞP

xt
j
2pc w

t
j

; when c 2 Ŷ t�1;

P
xt
j
2pc

wt
j
ft�1ðxt

j
ÞP

xt
j
2pc w

t
j

; when c 2 Y t;

8>>><
>>>:

(8)

where pc denotes the data set predicted to be class c inDt, in
which the pseudo-label argmaxfptjcg of each instance in Dt

can be calculated by Eq. (3). Note that the instances’ labels
of the unknown classes cannot be obtained in prior, so we
randomly initialize the class prototypes of the unknown
classes according to the set K as traditional k-means algo-
rithm, and train for several epochs of preliminary update.

3.4.2 Pacing Function

A direct way for classifying known and unknown classes in
Dt is to fine-tune ft�1 using all the instances. However, con-
sidering the embedding confusion, the initialized proto-
types are biased because pseudo-labels exist noises. If we
randomly sample batches from the full amount of data to
fine-tune model, the embedding confusion will further
affect the update of prototypes and pseudo-labels. There-
fore, inspired by [45], we turn to sort the instances accord-
ing to the difficulty, then present instances from easy to
hard for fine-tuning according to the increase of the model
capability.

In detail, the pacing function h : B ! Dt is used to deter-
mine a sequence of subsets B ¼ fB1; B2; . . . ; BLg 2 Dt, with
size jBlj ¼ hðBlÞ. L is the number of batches. The lth subset
Bl includes the first hðBlÞ elements of the instances, which
are sorted by the scoring function in ascending order. Here,
we utilize the fixed exponential pacing, which has a fixed
step length, and exponentially increasing size in each batch.
Formally, it is given by:

hðBlÞ ¼ minðy � db lfc; 1Þ �Nt: (9)

Where y denotes the fraction of data in the initial step, d is
the exponential factor for increasing the size of sampled
mini-batches in each step, f is the number of iterations in
each step, b�c denotes round down, l is the index of batches,
Nt is the number of instances. Consequently, in each mini-
batch, we select episodic data with variable length for reli-
able fine-tuning.

3.4.3 Fine-tune Clustering

With the sampled mini-batches fB1; B2; . . . ; BLg in each
epoch, we aim to fine-tune the ft�1 from easy to hard, and
Eq. (2) can be reformulated as:

Lt ¼ Lt
intra þ �1L

t
inter þ �2R

t

Lt
intra ¼

XL
l¼1

XjBlj

j¼1

XjŶ tj

c¼1

��ytljc
logðptljc Þ

Lt
inter ¼

XL
l¼1

XNt

j¼1

�
mþ dlj;p � min

xtnc2Vj

dlj;nc

�
þ

Rt ¼
XjŶ t�1j

c¼1

kmt
c � mt�1

c k22;

(10)

where Rt aims to constraint the updated prototypes of
known classes approaching the pre-trained ones, which can
regularize the embeddings of known classes. The pseudo-
labels �yt

j ¼ argmaxfptjcg for each instance can be calculated
by Eq. (3). So far, we assume that the number of classes Kt

is known, which is impractical in real applications. Thus,
we aim to estimate the number of classes in the unlabeled
data. Specifically, we fine-tune clustering using Dt by vary-
ing the number of unknown classes. The resulting clusters
are then examined by computing cluster validity index
(CVI), which concerns the intra-cluster cohesion versus
inter-cluster separation. And we select the generally used
Silhouette index [47]:

CVI ¼
X
x2Dt

bðxÞ � aðxÞ
maxfaðxÞ; bðxÞg ; (11)

where aðxÞ is the average distance between x and all other
data instances within the same cluster, and bðxÞ is the small-
est average distance of x to all instances in any other different
cluster. The optimal number of categories is the inflection
point of CVI with maximum curvature. The details are
shown in Algorithm 2.

3.5 Incremental Model Update

Ideally, the initial model training and novel class detection
processes can identify the known and unknown classes.
However, considering streaming data with unceasing novel
classes, we need reliable training data of novel classes to
create new prototypes and update the model parameters in
incremental fashion. Thus, we need to collect novel class
data for labeling, which can be used to re-train ft�1. Similar
to previous studies [21], [48], after curriculum clustering
operator for detection, we can achieve potential novel class
instances Dt

new for querying their true labels. Note that we
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can query full or only partial data of the novel class. How-
ever, only using the new data to update the model will lead
the catastrophic forgetting of known classes.

Algorithm 2.Novel Class Detection

� Input:
� Data set:Dt ¼ fxt

jgNt
j¼1

� Parameter: b, g, y, d, f

� Output:
� Novel Class Detection Network: f̂ t

1: for 0 � K � Kt
max do

2: Initialize prototypes mt
c according to Eq. (8);

3: while stop condition is not triggered do
4: Generate mini-batches fB1; B2; . . . ; BLg according to

Eq. (9);
5: for instance mini-batch Bl do
6: Calculate Lt using Eq. (10) similar to Algorithm 1;
7: Fine-tune model parameters using gradient descent;
8: end for
9: Update the prototype mt

c according to Eq. (4);
10: Update the pseudo-labels �y according to Eq. 3;
11: end while
12: Computer CVI forDt according to Eq. (11);
13: end for
14: Let f̂ t as theK� with optimal CVI value.

To solve this problem, we develop a mechanism to incor-
porate the stored memory and novel class information incre-
mentally, which can mitigate the forgetting of discriminatory
characteristics about known classes. In detail, we utilize the
exemplary dataMt�1 for regularization in re-training:

LðDt
new;M

t�1Þ ¼ L̂t
intra þ �1L̂

t
inter þ �2R

t

L̂t
intra ¼

X
xi2Dt

new[Mt�1

�ytilogðptiÞ�
X

xi2Mt�1

ft�1ðxiÞlog ftðxiÞ

L̂t
inter ¼

XNt

j¼1

"
mþ dlj;p � min

xtnc2Vi

dlj;nc

#
þ

Rt ¼
XjŶ t�1j

c¼1

kmt
c � mt�1

c k22:

(12)

The first term encourages the network to output the cor-
rect class indicator (classification loss) for all labeled exam-
ples, i.e.,Dt

new andMt�1. In detail,Mt�1 represents the stored
in-class examples, the second term of L̂t

intra aims to repro-
duce the scores calculated in the previous step (distillation
loss) for stored in-class examples, i.e., ensuring that the
stored in-class examples in Mt�1 can also output the consis-
tent prediction distributions ft�1ðxÞ predicted by historical
network through the current network ftðxÞ, thereby alleviat-
ing the forgetting problem of historical knowledge. After re-
training, we need to update the Mt�1 to store key points

of novel classes. Therefore, we randomly remove jY tjjMt�1j
jŶ t�1jjŶ tj

instances from each known class, and sample jMt�1j
jŶ t j instances

from each novel class. The details are shown in Algorithm 3.

It is notable that CILF only needs to conduct the NCD
task, i.e., novel class detection, according to the Algorithm 2
under the setting that without streaming data, and does not
require manual labeling and model update operations.

Algorithm 3. Class-Incremental Learning

� Input:
� Data set:memorydataMt�1, labeled novel class dataDt

new

� Learning rate parameter: h

� Output:
� Re-trained deep clustering Network: ft

1: Calculate the ft�1ðxjÞ of the examples fromMt�1 andDt
new;

2: while stop condition is not triggered do
3: for instance mini-batch do
4: Calculate LðDt

new;M
t�1; ftÞ according to Eq. (12);

5: Re-train model parameters using gradient descent;
6: end for
7: Update the prototype m according to Eq. (4);
8: end while

4 EXPERIMENTS

In this section, we mainly verify the proposed CILF from
two aspects: (1) classification of known and novel classes;
and (2) forgetting of known classes. Considering that most
large-scale datasets are concentrated on images, we empiri-
cally evaluate CILF by comparing it with the state-of-the-art
approaches on four simulated stream image datasets.

4.1 Datasets

There are many streaming image or text data in real applica-
tions, such as road condition images collected by unmanned
vehicles during driving, sequential remote sensing images
collected by satellites and incremental tweet data collected
by social media platforms. Considering data privacy and
versatility, we utilize three commonly used visual datasets
for class-incremental scenario following most NCD meth-
ods [17], [18], [30] (more experimental results of complex
image data and real time sequential text data can refer to the
supplementary), i.e., MNIST [49], CIFAR-10 [50], and
CIFAR-100.1 In detail, MNIST dataset contains labeled hand-
written digits images from 10 categories, where each class
contains between 6313 and 7877 monochrome images;
CIFAR-10 dataset has a total of 60000 color images of 32x32
pixels from 10 natural image classes; CIFAR-100 dataset is
enlarged CIFAR-10, andwe structure CIFAR-100 into 2 data-
sets: CIFAR-50 and CIFAR-100 according to [17].

Inspired from [17], [18], [30], [51], [52], we utilize the given
testing data from the raw dataset as a holdout set to evaluate
forgetting, and use the given training data to generate the
streaming data. Specifically, we rearrange instances in each
dataset to emulate a streaming form with novel classes con-
sidering two conditions: (1) single novel class for each time
window; (2) multiple novel classes for each time window.
For the single novel class case, we randomly choose C initial
classes, and only 1 novel classmay start in each timewindow.

1. http://www.cs.toronto.edu/kriz/cifar.html
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In order to be more in line with real-world applications, each
known class may disappear randomly at the end of current
time window. Specifically, we set C ¼ 5 for MNIST and
CIFAR-10, C ¼ 30 for CIFAR-50, and C ¼ 50 for CIFAR-100.
Fig. 4a presents a simulated example of the CIFAR-10, i.e., we
randomly choose 5 initial classes, and there are 5 time win-
dows with 1 novel class appearing in for each time window.
For the multiple novel class case, we randomly choose C ini-
tial classes, and Kt novel classes (i.e., Kt 2 ½2;K� novel clas-
ses) may randomly appear from each time window. Similar
to single class setting, each class may disappear randomly.
Specifically, we set C ¼ 3 for MNIST and CIFAR-10, C ¼ 30
for CIFAR-50, and C ¼ 50 for CIFAR-100. Fig. 4b presents a
simulated example of the CIFAR-10, i.e., we choose 3 initial
classes and there are 3 timewindows, 2 novel classes emerges
in the first time window, 3 novel classes in the second time
window, 2 novel classes in the last timewindow. In detail, for
each dataset, we randomly choose pre-set number of catego-
ries from the total classes as known class set, the rests are
regarded as unknown class set. The data of known class set
can be divided into two parts: 1) 50% of data are regarded as
initial training data; and 2) the remaining data are used to
constitute a streaming data. We simulate a streaming data as
shown in Fig. 4, the data before time step 1 are training data.
Then each class simulates an independent streaming data by
shuffling instances randomly and arranging the data accord-
ing to the index. A new class of streaming data appends every
fixed time interval. Therefore, the instances that occurred in
constitute a time window data mixed with known and
unknown instances.

4.2 Compared Methods

To validate the effectiveness of proposed CILF, we com-
pared it with existing state-of-the-art novel class detection
approaches and incremental learning methods.

First, we compared CILF with existing NCD and incre-
mental NCD methods. Including traditional anomaly
detection and linear methods: Iforest [53], One-Class SVM
(One-SVM) [40], LACU-SVM (LACU) [20], SENC-MAS
(SENC) [21]; as well as deep methods: ODIN-CNN
(ODIN) [23], CFO [17], CPE [18] and DTC [24]. Abbrevia-
tions in parentheses. DTC is a clustering based method for
multiple unknown classes detection. Note that Iforest, One-
SVM, LACU, ODIN, CFO, and DTC are NCD methods,
SENC and CPE are incremental NCD methods. All NCD
baselines except Iforest can be updated incrementally using

newly labeled unknown class data and memory data. Spe-
cifically, 1) Iforest, ODIN, and CFO can only perform binary
classifications, i.e., whether the instance is an unknown
class or not. Thus we further conduct unsupervised cluster-
ing on both known and unknown class data for subdivid-
ing. 2) all baselines are one-class methods except DTC, i.e.,
they perform NCD in two steps: first detect the super-class
that includes all unknown classes, and second perform
unsupervised clustering. 3) all of baselines are NCD meth-
ods except LACU, SENC and CPE, but they can be applied
in incremental NCD by combing memory data to update
following [18].

To validate the incremental model update, we also com-
pare our method with state-of-the-art forgetting methods:
DNN-Base, DNN-L2, DNN-EWC [28], IMM [29], DEN [54],
and each time window is regarded as a task for these
methods.

4.3 Evaluation Metrics

CILF can distinguish the known and unknown classes,
while mitigating the forgetting. Therefore, we measure the
proposed method from two aspects: (1) NCD performance;
(2) Forgetting performance.

Following [30], we adopt the commonly used evaluation
metrics for novel class detection: 1) Normalized Accuracy
(NA), which weights the accuracy for known and novel clas-
ses [55]; 2) Macro-F-measure and Micro-F-measure; and 3)
AUROC, which considers the NCD task as a combination of
novelty detection andmulti-class recognition [17].Moreover,
to validate the effect of overcoming catastrophic forgetting,
we calculate the performance on the forgetting profile of dif-
ferent learning algorithms as [52], i.e., let accm;n be the accu-
racy evaluated on the hold-out sets, i.e. the novel classes
emerge on n�th timewindow (n � m), after training the net-
work incrementally from stage 1 to m, the average accuracy
at time m is defined as: Am ¼ 1

m

Pm
n¼1 accm;n [52]. higher Am

represents for better classifier. Forgetting ¼ A��meanðAÞ
A� ,

where A� is the optimal accuracy with the entire data. We
repeat all experiments 5 times, and record themean and std.

4.4 Implementation

We develop CILF based on convolutional network structure
as ResNet18 [56]. Note that we use an identical set of hyper-
parameters (�1 ¼ 1, �2 ¼ 1, a ¼ 0:3, b ¼ 0:8, y ¼ 0:2, d ¼ 3,
f ¼ 10). In all of our models and experiments, we adopt stan-
dard SGDwithNesterovmomentum [57], where the momen-
tum is 0.9. We train the initial model f as following: the
number of epochs is 20, the batch size is 128, the learning rate
is 0.01, and weight decay is 0.001. We implement all baselines
and perform all experiments based on code released by corre-
sponding authors. For CNN based methods, we use the same
network architecture and parameters during training, such as
optimizer, learning rate schedule, and data pre-processing.
Ourmethod is implemented on a RTX 2080TIGPU.

4.5 Single Novel Class Detection

Table 2 compares the detection performance of CILF with all
baseline methods on each streaming data under the single
novel class case. We observe that: (1) CNN-based methods
perform better than traditional detection approaches, i.e.,

Fig. 4. The class distribution of simulated stream on CIFAR-10 dataset
as an example. (a) represents the single novel class case, and (b)
denotes the multiple novel classes case. The X-axis denotes the stream-
ing data and the Y-axis is the class information.
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One-SVM, LACU-SVM, SENC-MAS. This indicates that neu-
ral network provides superior feature embeddings for pre-
diction and detection over high dimensional streaming data;
(2) CILF consistently outperforms all compared CNN-based
methods over all the criteria. For example, in CIFAR-10, CILF
provides at least 2% improvements than other methods. This
indicates the effectiveness of both prototype based loss for
feature embedding and curriculum clustering operator for
detection; and (3) The detection performance for large-scale
datasets, (e.g., CIFAR-100) still needs to be improved, as the
results of all methods are unsatisfactory. This is a roadmap
for future work. A possible solution is to use external corpus

to build a larger-scale deep pre-trainmodel or consider trans-
fer learning technology to transfer extra source domain cor-
pus knowledge.

Table 3 compared the forgetting performance of CILFwith
all baseline methods, which defines the forgetting of emerge
class on a particularwindow, i.e., the difference betweenmax-
imum knowledge gained about that window throughout
learning process and the knowledge we currently have about
it, and the lower difference the better. The results show that
CILF has the least forgetting,which validates that thememory
distillation and prototype regularization can mitigate the for-
getting of known class data. Moreover, Fig. 5 exhibits the

TABLE 2
Classification of Known Classes and Novel Class Detection Performance Over Streaming Data in Single Novel Class Case

The best results are highlighted in bold.

TABLE 3
Forgetting Measure of Known Classes Over Streaming

Data in Single Novel Class Case

The best results are highlighted in bold.
Fig. 5. (Best view in color.) Performance of known classes on different
time windows of CIFAR-10.
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results more directly. Due to page limitation, we only report
the results of CIFAR-10. The results indicate that the perfor-
mance of known classes falls slower at different windows,
which states that CILF canmitigate forgetting efficiently.

4.6 Multiple Novel Class Detection

Table 4 compares the detection performance of CILF with all
baseline methods under the multiple novel classes case. We
observe that: (1) multiple novel class detection method, i.e.,
DEC, does not outperform single novel class detection meth-
ods with subsequent clustering operator. This indicates that

direct clustering method may be influenced by the embed-
ding confusion; and (2) CILF consistently outperforms all
compared CNN-based methods in all the criteria except
AUROC on CIFAR-50, for the reason that there exist class-
imbalance phenomenon in CIFAR-50, i.e., the number of
novel class instances are fewer. CILF sacrifices precision in
order to improve the high recall rate of the new class. This
further indicates the effectiveness of curriculum clustering
operator for detection. Table 5 and Fig. 6 compared the for-
getting performance of CILF with baseline methods. Identi-
cally, the results show that CILF has the least forgetting, and
the performance of known classes fall slower, which shows

TABLE 4
Classification of Known Classes and Novel Class Detection Performance Over Streaming Data in Multiple Novel Class Case

The best results are highlighted in bold.

TABLE 5
Forgetting Measure of Known Classes Over Streaming

Data in Multiple Novel Class Case

The best results are highlighted in bold.
Fig. 6. Performance criteria on different time window on CIFAR-10 in
multiple novel class case.
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that CILF can mitigate forgetting under multiple novel clas-
ses scenario.

4.7 Ablation Study

We conduct more ablation studies to verify the effectiveness
of the proposed sampling method: 1) w/o FEN, we replace
the feature embedding network with the classification net-
work considering prediction layer; 2) w/o NCD, we replace
the learnable curriculum clustering with the traditional
uncertainty prediction for novel class detection; 3) w/o IMU,
we directly update the model without considering the for-
getting mechanism. Table 6 records the forgetting perfor-
mance on each streaming data with single novel class.
Table 7 records the detection performance on each streaming
data with single novel class. The results validate that: 1) the
detection performance of w/o NCD, w/o FEN, and w/o
IMU declines, which indicates that each component contrib-
utes to the detection. In detail, the feature embedding net-
work is more efficient to learn the inter-class and intra-class
structure than classification network, and is more convenient
for model expansion. The learnable curriculum clustering
performs better than traditional uncertainty prediction,
which indicates the effectiveness of curriculum learning.
And the forgetting regularization is benefit for classifying
known class in the unsupervised streaming data. 2) the deg-
radation of w/o NCD is more obvious, for the reason that
learnable curriculum clustering is more convenient for mul-
tiple novel class detection, while comparing methods need
conduct second clustering after detection. Thereby, all three
components contribute to the class-incremental learning,

and the learnable curriculum clustering contributes more
under themultiple novel class case.

4.8 Influence of Query Size

Fig. 7 shows the influence of querying number about poten-
tial novel class instances, and we only give the results on
CIFAR-10 considering page limitation. Here, we randomly
query a subset, i.e., a certain percentage of potential instan-
ces from the current window. From the Figure, we observe
that the prediction performance is improved with the
increase of labeled data, which verifies the importance of
ground-truths for model update.

4.9 Parameter Sensitivity

The main parameters in novel class detection and model
update are the �1 and �2 in Eq. (8). We vary these parame-

TABLE 6
Classification of Known Classes and Novel Class Detection Performance Over Streaming Data

* (sin) denotes the single novel class case and * (mul) represents the multiple novel class case. The best results are highlighted in bold.

TABLE 7
Forgetting Measure of Known Classes Over Streaming

Data in Single Novel Class Case

The best results are highlighted in bold.

Fig. 7. Relationship between detection performance during stream with
label request percentage for every time window.

Fig. 8. Parameter sensitivity of �1 and �2 for the CIFAR-10 in novel
detection. (a) is single novel class case, (c) is multiple novel class case.
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ters in f0:01; 0:1; 1; 10; 100g to study their sensitivity to clas-
sification performance and record the AUROC results in
Fig. 8. Both the single and multiple cases indicate that the
performances are better when setting �1 with a larger value,
i.e., larger than 1.

4.10 Execution Time for Model Update

Considering that our method focuses on multiple novel
class detection, we analyze execution time for detecting
and updating model under the multiple novel class case.
In detail, we select five deep methods, i.e. ODIN-CNN,
CFO, CPR, DTC and CILF, and record their execution time
under the multiple novel class case in Fig. 9. CILF takes
less time, for the following reasons: 1) Other methods
require additional clustering operations; and 2) Embed-
ding confusion will slow down the clustering convergence,
which indicates that the curriculum clustering can acceler-
ate detection.

5 CONCLUSION

Real-word application always receive streaming data,
which emerges previously unknown classes sequentially.
Class-Incremental Learning faces two main challenges:
Novel class detection, streaming test data will accept
unknown classes. Model expansion, the model needs to
be effectively updated after the new class detection. How-
ever, traditional methods have not always fully consid-
ered these two challenges. To this end, we propose a
Class-Incremental Learning without Forgetting (CILF)
framework. CILF designed to regularize classification
with decoupled prototype based loss, which can improve
the intra-class and inter-class structure significantly, and
acquire a compact embedding representation for novel
class detection in result. Then, CILF employed a learnable
curriculum clustering operator to estimate the number of
semantic clusters via fine-tuning the learned network.
Last, CILF updated the network effectively with robust
regularization to mitigate the catastrophic forgetting. In
result, CILF utilized the decoupled prototype network to
effectively detect multiple novel classes and update the
model in a unified framework. Empirical studies showed
the superior performances of CILF. As verified by experi-
ments, there is still room for improvement of NCD on
large-scale datasets. Therefore, how to further improve
the performance of detection in complex environment and
further demonstrate interpretability are very interesting
future research directions. We build the model with
MindSpore tool [58].
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