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HarMI: Human Activity Recognition Via
Multi-Modality Incremental Learning
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and Zhaochun Ren

Abstract—Nowadays, with the development of various
kinds of sensors in smartphones or wearable devices, hu-
man activity recognition (HAR) has been widely researched
and has numerous applications in healthcare, smart city,
etc. Many techniques based on hand-crafted feature engi-
neering or deep neural network have been proposed for
sensor based HAR. However, these existing methods usu-
ally recognize activities offline, which means the whole
data should be collected before training, occupying large-
capacity storage space. Moreover, once the offline model
training finished, the trained model can’t recognize new
activities unless retraining from the start, thus with a high
cost of time and space. In this paper, we propose a multi-
modality incremental learning model, called HarMI, with
continuous learning ability. The proposed HarMI model can
start training quickly with little storage space and easily
learn new activities without storing previous training data.
In detail, we first adopt attention mechanism to align het-
erogeneous sensor data with different frequencies. In ad-
dition, to overcome catastrophic forgetting in incremental
learning, HarMI utilizes the elastic weight consolidation
and canonical correlation analysis from a multi-modality
perspective. Extensive experiments based on two public
datasets demonstrate that HarMI can achieve a superior
performance compared with several state-of-the-arts.
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I. INTRODUCTION

HUMAN activity recognition (HAR) aims to detect human
physical activities in real-world scenarios, which can al-

low intelligent systems to assist individuals with improvements
of the quality of life in areas such as healthcare, smart cities,
etc [16], [19], [24]. Human activity recognition (HAR) via smart
sensing has drawn more and more researchers’ interests both in
academic and industrial areas in recent years [7], [32], [40].
Kinds of sensors (such as accelerometers, gyroscope, etc.) em-
bedded in individuals’ powerful smartphones or smart wearable
devices are utilized to recognize human activities, which is
widely used in many areas like medicinal services, business,
security and so forth [40].

With the rapid development of deep learning [35], [36], [46],
the existing works usually adopted kinds of deep neural network
based on collected offline sensor data to recognize activities, for
example, DeepSense [40], AttnSense [29]. However, due to the
sensor data is sensitive to users’ privacy, the HAR model tend to
be transferred to edge devices and mobile devices locally rather
than the remote servers in recent years [42]. Compared with
the high-performance clusters, edge devices and mobile devices
usually have very limited resources, for instance, limited storage,
limited computing abilities, etc. When facing with resources
limited environments, traditional methods encounter several
challenges. In detail, traditional methods collected data from all
kinds of sensors in all time intervals and built a general offline
model to recognize activities, which consumed a lot of space
to store huge training data. In addition, once the offline model
training finished, it could be difficult for the trained model to
recognize new activities unless retraining from the start, thus
with a high cost of time and space. Therefore, to recognize
activities incrementally along with the generation of sensor data
is essential. Fig. 1 illustrates the difference between traditional
offline HAR methods and incremental learning method. The
users’ activities could be a time series sequence: driving, work-
ing, watching TV, etc., with data generated by multiple sensors.
The incremental HAR models begin with an initial model,
with new sensor data of a new activity generated, the model
parameters could be updated to obtain abilities to recognize
the new activity as well as the previous activities. Training an
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Fig. 1. An example to illustrate the difference between traditional of-
fline HAR methods and incremental learning method.

HAR model incrementally means we don’t need to keep the
entire training data in memory, which is good for dealing with
massive datasets or training in the resources limited embedding
devices. In addition, the online nature also means that the model
can quickly react to changes in the distribution of the newly
generated sensor data.

Therefore, we consider to adopt incremental learning to recog-
nize activities with continuous learning ability. The incremental
learning methods try to retain knowledge learned from previ-
ous tasks during sequential learning process [13], [21], [25].
However, when applied incremental learning in multi-modality
sensor data for activity recognition, we still encounter several
challenges. (1) The sensors usually have different types and
versions, which lead to the sampling frequencies of different
sensors might be quite different. For instance, one HR monitor
samples with 100HZ while another IMU sensor works in 33HZ,
which means the amount of sampled data in one second is quite
different. Therefore, measurements from multiple sensors are
not aligned. (2) Catastrophic forgetting is common in incremen-
tal learning [10]. For example, an individual may sit in the office
for 1 h, then walk 10 minutes to go home. We expect the model
can discriminate sitting down in one time interval and walking in
the next time interval. However, due to the fact that sensors gen-
erate measurements so fast, when changing to learn the model
on walking, the model might forget the previous knowledge
learned before in sitting. In addition, the sensing measurements
are multi-modality, and how to overcome catastrophic forgetting
in multi-modality scenario is challenging.

In this paper, we propose a multi-modality incremental learn-
ing model for HAR, called HarMI , to address the above
challenges. First, we adopt an attention mechanism to weight
each measurements in one time interval to align the data from
multiple sensors. Next, we combine canonical correlation anal-
ysis (CCA) [18] and elastic weight consolidation (EWC) [22]
to overcome catastrophic forgetting from a multi-modality per-
spective. In detail, we construct another attention layer for the
fusion of each view’s representation. In addition, we project
each view’s representation linearly and calculate the correlation
coefficients among these projections. Based on the theory of
CCA and method proposed by [20], we add the calculated
correlation coefficient as regularization term of the loss function.
Traditionally in incremental learning, EWC can consolidate

parameters which have great influence on the loss of current task.
Therefore we modify traditional EWC method to consolidate
the parameters that have a great influence on the classification
loss and the calculated correlations among modalities. Exten-
sive experiments demonstrate the effectiveness of the proposed
HarMI .

To sum up, our contributions can be summarized as follows.
� We address the HAR problem based on multiple sensors in

incremental learning way. Compared with the traditional
offline methods, to recognize activities incrementally can
start training quickly and require little storage space, with
high scalability when facing with new kind of activities.
Solution to this problem is more similar with the real-
world scenarios.

� We propose a multi-modality incremental learning model,
named HarMI , to recognize activities based on hetero-
geneous sensing data from multiple sensors. Specifically,
HarMI aligns different sensor data based on attention
mechanism. Besides, we attempt to solve the catastrophic
forgetting problem of incremental learning from a multi-
modality view. We combine CCA and EWC to consolidate
model parameters that make contributions to reducing task
loss and maintaining consistent outputs across each views.

� We evaluate our method on two public datasets, namely
PAMAP2 and HHAR dataset, to verify the effectiveness
and efficiency of HarMI .

The rest of the paper is organized as follows. Section 2
introduces the traditional human activity recognition methods,
the related works on incremental learning and multi-modality
learning. Section 3 formalizes the human activity recognition
problem in incremental learning way. Section 4 proposes a
multi-modality incremental learning model for HAR, namely
HarMI , including aligning sensor data, multi-modality model
with auxiliary output and consolidating parameters to overcome
catastrophic forgetting. Section 5 reports experimental results,
and demonstrates the performance of our proposed factor graph
model. Section 6 concludes this paper.

II. RELATED WORK

A. Human Activity Recognition

Multiple sensors based heterogeneous human activity recog-
nition (HAR) has drawn many researchers’ interests in the past
few years. The existing methods for sensor based HAR were
usually based on deep learning techniques, which can learn high
level representations automatically. For example, [15] utilized
ensembles of LSTM learners for activity recognition scenario to
address the imbalanced datasets and the data quality problem.
DeepSense [40] adopted CNN to learn the local interactions
within each sensing modality and global interactions among
different sensor inputs. In addition, RNN was utilized to learn
the inter-interval relationships of the time series sensor data.
AttnSense [29] introduced attention mechanism into CNN-RNN
framework considering importance among different sensors and
different time series measurements.

[5] proposed a multi-agent spatial-temporal attention model
by considering the spatially-temporally varying salience of
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features and the relations between activities and correspond-
ing individual. [4] proposed an interpretable parallel recurrent
model with convolution attentions for sensor based HAR on
multi-modality scenario, in which CNN was used to extract the
spatial relationships of features, and attention mechanism was
utilized to extract the salient information of activities to address
the problems of interperson variability and interclass similarity.
However, Most of the previous HAR models usually built a
general offline model to recognize activities while ignoring
conducting HAR in a incremental learning way. The offline
models should prepare the sensor data for training, usually oc-
cupying large-capacity storage space. In addition, when training
new activities after the completion of training process, it must
train start from scratch. Therefore, we propose a multi-modality
incremental learning model for HAR based on kinds of sensor
data.

B. Multi-Modality Learning

The multi-modality or multi-view data was very common in
real-world scenarios. For instance, the audio signal and video
signal can be regarded as two modalities in multimedia data.
Similarly, different sensors were usually considered as different
modalities in sensor based HAR. Traditionally, the single modal-
ity learning methods usually concatenated the multi-modality
data into one feature vector, ignoring the specific characteristics
of each modality. In contrast, multi-modality methods consid-
ered to improve the generalization performance by learning a
function for each modality and optimizing all them jointly.

Traditionally, the multi-modality learning algorithms can
be divided into three categories: co-training algorithms,
co-regularization algorithms and margin-consistency algo-
rithms [45]. In detail, the co-training algorithms were mainly
proposed for semi-supervised learning [3], which utilized unla-
beled data to train in two different modalities to maximize mutual
consistency. Based on co-clustering framework and domain
adaptation, IMAM [37] proposed a multi perspective adaptive
model, which studied the domain adaptation of multi-modality
data and realized the complementary transfer of cross domain
knowledge in multiple subspace of features. IMAM used labeled
data to learn a function for each modality and then predicted
labels for unlabeled data. The co-regularization algorithms usu-
ally added regularization terms to the objective function to make
sure that data from multiple modalities are consistent. Canonical
correlation analysis (CCA) was a representative approach within
co-regularization algorithms. As a regularization term, CCA
seeks linear transformations for each modality, so the correlation
among the transformed feature sets can be maximized in the
common subspace while regularizing the self covariance of each
transformed feature sets to be small enough [45]. Recently, with
the fast development of deep learning techniques, lots of multi-
modality methods based on deep neural networks have been
proposed [2]. When applying CCA in deep neural networks,
the traditional stochastic gradient descent can’t work due to the
fact that an optimization problem with constraint of covariance
matrix needed to be solved. DCCA [2] utilized batch training
to solve this problem but with very large calculation cost. This

was because DCCA required to compute covariance matrices
as well as inverse square roots for projection weights and even
perform matrix singular value decomposition (SVD). Moreover,
the performance of DCCA could be worse when the batch was
too small. CorrReg [20] proposed a new method to calculate
the correlation coefficients of the output projections of each
modality to approximate the total correlation coefficients but
with a much lower cost compared with DCCA [2]. Margin-
consistency algorithms were proposed to utilize consistency of
multi-modality data to regularize that the margins from two
modalities should be the same or have the same posteriors [45].
For instance, MVMED [34] extends maximum entropy discrim-
ination to multi-modality scenarios, enforcing the margins from
two modalities to be identical.

Some existing works considered recognizing activities based
on multi-modality learning. For instance, Garcia et al. [11]
utilized a multi-view stacking method to fuse the data from
heterogeneous sensors for activity recognition. Kushwaha et al.
[23] addressed the problem of silhouette-based HAR from
multiple views, which used both contour-based pose features
and uniform rotation local binary patterns for view invariant
activity representation. However, most existing works usually
built offline models, which consumed a lot of space to store
huge training data. In addition, once the offline model training
finished, it could be difficult for the trained model to recognize
new activities unless retraining from the start, thus with a high
cost of time and space. Therefore, to recognize activities in an
incremental way along with the generation of sensor data is
essential, which is the focus of work.

C. Incremental Learning

Incremental learning [27], also called continual learning [43]
or lifelong learning [21], is a branch of online learning [17],
usually learns the models through a sequence of tasks. The
incremental learning model needs to retain knowledge of past
tasks [22] when training on the current task. As mentioned
in [6], incremental learning can be considered to continuously
learn activities from newly coming data, however leading to
catastrophic forgetting.

Catastrophic forgetting [1] [8], [14] is a common problem in
incremental learning, which means the model can achieve the ex-
pected performance on the current task while performing worse
on the previous tasks as if “forgetting” the learned knowledge
from previous tasks. This is due to the fact that when training on
a new task, model’s parameters might be constantly updated
according to the sensing data of current task. The average
accuracy using batch training and sequential training under two
public datasets for HAR is depicted in Fig. 2. As shown in the
result, the average accuracy when training activities sequentially
declines quickly, which demonstrates the catastrophic forgetting
in sequential training. Traditionally, EWC [22] preserved knowl-
edge of previous tasks by selectively slowing down learning on
the weights important for those tasks, which is implemented
with a form of quadratic regularization.

Incremental adaptive deep model (IADM) [38] was a method
based on EWC regularization including attention mechanism.
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Fig. 2. Average accuracy using batch training and sequential training
under two public datasets for HAR. when training k-th activity, the batch
training strategy (blue curve) use the data of the first activity to k-th
activity, while the sequential training strategy (red curve) only uses the
data of the k-th activity. The architecture of model is the same, using the
attention layer to align sensor data, as discussed in Section IV-A (with-
out auxiliary output layer and EWC). (a) HHAR dataset. (b) PAMAP2
dataset.

In detail, IADM constructed multiple classifiers with the deep
layers of neural networks and used an attention layer to weight
the outputs of those classifiers, which were also embedded
in the calculated diagonal Fisher matrix. Compared with the
traditional EWC, IADM has better scalability and sustainabil-
ity. iCaRL [30] retained knowledge from previous tasks using
knowledge distillation. However, iCaRL needed to keep a certain
number of samples from previous tasks. With the increase of
number of previous tasks, the number of samples in each task
will become smaller, resulting in poor performance. PathNet [9]
froze parameters of previous tasks and achieved knowledge shar-
ing using a genetic algorithm to reuse some neurons, resulting in
a fast consumption of model capacity. GEM [28] ensured that the
updating of each parameter would not damage the performance
of previous tasks and needed to preserve a certain amount of
samples like iCaRL. GeppNet [12] used self-organizing map-
ping (SOM) in the input space to model the feature preferences of
hidden layer neurons in the architecture. SOM network learned
a representative vector for each task in the input space, and the
representative vectors of similar tasks are as similar as possible.
When learning a new task, the learning process was limited to a
partition of the input space, so only part of the model parameters
would be updated without affecting other parameters. Geepnet
can still maintain high efficiency for high-dimensional data, but
with the increase of the number of tasks, the performance maybe
decrease obviously. DMA [26] was a dual memory architecture
including a shallow neural network and a deep neural network.
In detail, the shallow one can be trained quickly on the data of
new tasks to meet the real-time requirements, while the deep
network has larger parameter space achieving higher accuracy.
However, DMA needed to store streaming data to train deep
network, requiring extra large storage space.

However, the existing methods just considered to solve the
catastrophic forgetting problem in single-modality scenario.
Since the multiple sensors based HAR can usually be formalized
as a multi-modality problem, utilizing the correlations among
different modalities to address the catastrophic forgetting could
be necessary. Therefore in this work, we combine EWC and
canonical correlation analysis (CCA) to overcome catastrophic
forgetting from a multi-modality perspective in sensor based
HAR.

TABLE I
NOTATIONS USED IN THE PAPER

III. PROBLEM DEFINITION

Given a real-world scenario in which an individual might wear
multiple sensors, the total number of sensors can be denoted as
S. In every time window with T seconds (T = 5 s in default),
the data generated by the i-th sensor is represented as Xi =
{x1

i , . . . , x
j
i , . . . , x

ni
i }, in which xj

i is a vector and ni denotes
the amount of the generated data. Due to the sampling frequency
of each sensor is different, the amount of data generated in
each time window also changes a lot. All data generated by
all sensors in the time window can be represented by XS =
{X1, X2, . . . , XS}. Assuming that individuals’ activities are
a sequence Activity = {Ac1, Ac2, . . . , AcK} with time, for
example, sitting, walking, running, etc. A HAR model needs
to be trained to recognize the total K activities in an incremental
way. Within the k-th activity, the data generated by all sensors
are denoted as {XSt

k}mk
t=1, in which mk is the total number of

time windows with T seconds. The incremental HAR model is
trained immediately after each activity finished, which means to
using {XS t

1}m1
t=1, {XSt

2}m2
t=1, . . ., {XSt

K}mK
t=1 as training data

respectively to train model in sequence. yk represents label of
the k-th activity, the goal of HAR is to learn a function that maps
collected sensor data {XSt

k}mk
t=1 to yk in an incremental way:

f({XSt
k}mk

t=1) → yk (1)

The notations used in the paper are shown in Table I.

IV. HARMI: MULTI-MODALITY INCREMENTAL LEARNING

MODEL FOR HAR

In order to save storage space for training and learn new
activities easily, we propose a multi-modality incremental model
for human activity recognition, called HarMI , as shown in
Fig. 3. The different sensors are considered as different views in
HarMI . As mentioned before, the amount of sampled sensor
data in one same time window is quite different. Besides, catas-
trophic forgetting is a common problem in incremental learning.
To address the above challenges, the proposed HarMI first
introduces hierarchical attention layers for aligning the measure-
ments from multiple sensors in one time window withT seconds.
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Fig. 3. The architecture of the proposed model HarMI. The solid line arrow denotes the the training process. The dotted arrows denote the
parameter consolidation stage.

Then, in order to overcome the catastrophic forgetting problem,
HarMI combines CCA and EWC to consolidate parameters
of previous activities from a multi-modality perspective. The
details are shown as follows.

A. Aligning Sensor Data

Since each sensor might have different working frequency,
the numbers of measurements generated by different sensors
in one time interval could be quite different. In addition, dif-
ferent measurements generated by one same sensor in one
same time interval could also contribute to the activity label
differently. Therefore, we introduce the attention mechanism to
align different sensor data as well as considering the imbalanced
importance of measurements. The attention mechanism can
assign the highest weight to the most important part of inputs,
which has been applied in many applications successfully, such
as image question answering [39], sequential recommendation
system [41], or sensor based applications [44].

Therefore, during every time interval with T seconds, for
the i-th sensor (i ∈ {1, 2, . . . , S}), we utilize an attention layer
to weight all the measurements and generate a fixed-length
feature vector to achieve aligning of different sensors’ data. As
shown in Fig. 3, HarMI adopts S attention layers to weight
measurements for every sensor when training each activity. The
details of the attention layer within each sensor can be formalized
as follows:

αj
i =

exp(φ(w1
i x

j
i + b1i ))∑ni

j=1 exp(φ(w
1
i x

j
i + b1i ))

(2)

x̃i =

ni∑
j=1

αj
ix

j
i (3)

where φ(·) denotes the activation function where we utilize the
tahn function to enhance non-linear capability; ni denotes the
total number of measurements generated by the i-th sensor; αj

i

refers to the importance of the j-th measurement; the interme-
diate representation of the i-th modality x̃i is the summation of
the measurements weighted by the attention scores. and{w1

i , b
1
i }

are parameters that need to be learned.
Then in order to improve the learning ability of the proposed

model, we utilize a fully connected neural network with two
hidden layers for each modality representation as follows.

vi = MLP (x̃i) (4)

where MLP (·) represents the neural network with two hidden
layers, vi denotes the feature representation of the i-th modal-
ity, which is the transformation of the intermediate represen-
tation x̃i. It is worth noting after transformation that {vi|i ∈
1, 2, . . . , S} have the same dimension.

B. Multi-Modality Model With Auxiliary Output

After calculating the representation of each modality within
the training for the k-th activity, we use another attention layer to
fuse the modality features. Different modalities could contribute
differently to the prediction of the activities, and the attention
layer can evaluate the importance of each modality. Then the
final activity prediction can be obtained through an output layer
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which is shown in Fig. 3. The details are shown as follows:

βi =
exp(φ(w2

i vi + b2i ))∑S
i=1 exp(φ(w

2
i vi + b2i ))

(5)

where φ(·) denotes the activation function as mentioned before;
βi is the importance measure of each modality, and {w2

i , b
2
i } are

parameters which need to be learned.

yk = wout

(
S∑

i=1

βivi

)
+ bout (6)

where yk denotes the label of the k-th activity; {wout, bout} are
the parameters of the output layer that need to be learned.

In order to extract better advanced features, we want to keep
the extracted modality representations consistent in a common
space to maximize the correlations among each modalities [20].
Therefore, we construct an auxiliary output layer based on the
method proposed in the literature [20], in which we project each
modality representation linearly into one common space. By
maximizing the correlation coefficient of these projections, we
can make those outputs of modalities keep consistent, which is
conducive to training process. Moreover, after the end of training
process, it can also help overcome catastrophic forgetting, as we
will discus in Section IV-C.

In detail, we take {vi|i ∈ 1, 2, . . . , S} as the input of the
CorrReg layer, which is used to calculate the correlations among
different modalities. Each representation vector is linearly pro-
jected to a new one respectively, which is calculated as follows.

ṽi = viw
∗
i (7)

in which ṽi denotes the linearly projected feature vector, and
the w∗

i is the parameter corresponding to the i-th modality
representation.

Then the correlations among each modality are estimated
based on the linearly projected vectors {ṽi|i ∈ 1, 2, . . . , S}. The
details are calculated as follows:

μ̃l
i =

1

N

N∑
ṽli (8)

(σ̃l
i)

2 =
N∑

(ṽli − μ̃l
i)

2 (9)

where the estimation of the correlation is calculated on each
dimension and ṽli denotes the l-th dimension of ṽi. Each ṽi has
the same dimension with vi. Given a mini-batch withN samples,
the meanμl

i and varianceσl
i on the l-th dimension are calculated.

Then the correlations among the modalities can be obtained:

Corr ≈
∑
l

∑N ∏S
i=1(ṽ

l
i − μ̃l

i)√∏S
i=1(σ̃

l
i)

2 + ε

(10)

in which ε is utilized for the numerical stability. Similarly, the
calculation of the correlation is also based on each dimension ṽli
of the projected vectors.

Therefore, the predicted activity label and the correlation
among modalities are calculated from the attention layer and
the auxiliary output layer respectively. We specify the objective

function as follows, in which the correlation added as a regular-
ization term to improve the network training:

L = Lobj − λcCorr (11)

in which Lobj denotes the classification loss and we use cross
entropy in our work. L represents the final loss and λc is a super-
parameter.

C. Consolidating Parameters to Overcome Catastrophic
Forgetting

As mentioned before, catastrophic forgetting is a common
but tricky problem in incremental learning. This problem would
also occur when training various kinds of activities sequentially.
Therefore, in the HarMI framework, we utilize a method
based on EWC [22] combining with the calculated correlation
among modalities in Section IV-B. However, the traditional
EWC approach is utilized in single-modality scenario, ignoring
the correlations among different modalities when facing with
multi-modality sensor data. In detail, EWC method calculated
the diagonal Fisher matrix based on the final loss at the end
of each training iteration, in which each value in the matrix
corresponds to a model parameter, reflecting its importance.
Then in the next training iteration, a regularization term can be
adopted to limit the change range of important parameters. When
training the activities sequence Activity = {Ac1, . . . , AcK} in
an incremental way, we utilize the correlations among kinds
of modalities to consolidate parameters. At the end of training
iteration on the k-th activityAck, we need to estimate the impor-
tance of each parameter about the current activity. Specifically,
we pass all the training samples through our model to calculate
the diagonal Fisher matrix FAck . The n-th diagonal value of
FAck , represented as Fn

Ack
, can be calculated as follows:

Fn
Ack

=

mk∑
t

(
∂L(XSt

k)

∂θnAck

)2

+ Fn
Ack−1

(12)

where L(XSt
k) is the loss during evaluating the t-th sample

of k-th activity, including Lobj and Corr as shown in Eq. 11.
θnAck

is n-th parameter in the model after the training of the k-th
activity. Fn

Ack−1
is the saved diagonal Fisher matrix which are

calculated after the training of the k − 1-th activity. Specially,
the Fn

Ac0
is a matrix with all zero, which is used to calculate

Fn
Ac1

at the end of training process of the first activity.
In traditional EWC, the equation is as following:

L(θAck+1
) = Lobj(θAck+1

) + λe

∑
n

Fn
Ack

(θnAck+1
− θnAck

)2

(13)
The more important the parameter for the old task, the larger
the corresponding value in the Fisher matrix. Therefore, when
using gradient descent to optimize the target loss L(θAck+1

),
these parameters that are important to the old task change little
during the training process.

During the sequential training process, parameters in the
hierarchical attention layers are continuously changed, leading
to performance of the attention layer becomes worse when
facing with the previous activities. In order to achieve better
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performance, the representation of each modality needs to be
consistent in the common space. Therefore in multi-modality
scenarios, it is important to consolidate the parameters that
can keep the representations of modalities consistent. So our
proposed method calculates diagonal Fisher matrix based on
two parts: the classification loss and a regularization term Corr
which denotes the estimation of correlations among each modal-
ity. The parameters relate with the classification loss and view
output consistency can be consolidated. In the next training
iteration, the proposedHarMI will retain the above parameters
preferentially, which can overcome the catastrophic forgetting
problem. When training on the k + 1-th activity Ack+1, we
use another regularization term to consolidate the important
parameters of the previous k activities. The loss function can
be calculated as:

L(θAck+1
) = Lobj(θAck+1

)− λcCorr

+ λe

∑
n

Fn
Ack

(θnAck+1
− θnAck

)2 (14)

in which θnAck+1
represents the n-th parameter of current model,

θnAck
denotes the corresponding saved parameter of activityAck ,

Fn
Ack

represents the corresponding value of θnAck
in the diagnosis

Fisher matrix of activity Ack. λe is a super-parameter deciding
importance the previousk activities comparing with the new one.
Then, in the same way, we calculate diagnosis Fisher matrix
FAck+1

as shown in Eq.12 and update saved parameters of
previous activities to current model parameters, which would
be repeated during the incremental training process until all
activities are trained.

V. EXPERIMENT

In this section, we evaluate the proposed HarMI on two
benchmark datasets. We first detail the experimental setup,
dataset description and the adopted baselines, respectively. Then
we demonstrate the effectiveness of our multi-modality incre-
mental learning model.

A. Experimental Setup

We train the model in sequential style Activity =
{Ac1, . . . , AcK} one by one varying with time. After finishing
the training of each activity, the model will not store the training
data again. We conduct the experiments in two scenarios. One is
without repetitive activities, which means the kinds of activities
in the sequence are all different. The other one is with repetitive
activities, in which each kind of activity appear twice and then
the activity sequence is permuted randomly.

In detail, we use measurements generated by multiple sensors
within one time window (T = 5 seconds in default) as input for
activity recognition. We use mini-batch to train the model. Since
EWC constraints are used to solve the catastrophic forgetting
problem, SGD is chosen as the optimizer. In order to find
the model’s super-parameters, we use grid search to find the
super-parameter of EWC constraint regularization, learning rate
and momentum. We try [100, 500, 2500, 5000, 8000, 10 000,
15 000, 20 000] super-parameters respectively for the EWC

TABLE II
NUMBER OF USED PARAMETERS OF ALL MODELS IN TWO DATASETS

regularization, [0.0001, 0.000 001] for learning rate and [0,
0.9, 0.99] for momentum. It is worth noting that we need to
find the appropriate three super-parameters again when train-
ing each activities. To sum up, for learning each activitiy, we
need 8× 2× 3 = 48 search process. We adopt the accuracy,
precision, recall, and F1-score as the evaluation metrics.

Number of parameters: In general, models with more pa-
rameters will retain more knowledge about previous tasks and
generally perform better. To make a fair compare on our model
and baselines, we keep all model parameters within the same
range on both datasets. Table II show number of parameters for
each model in two datasets.

Early stop: The number of epochs for training each activities
is set as 500. Due to the strict constraints of the consolidated
parameters, it would be difficult for the model to learn knowledge
on current activity. Therefore, model’s parameters are recorded
only if accuracy on the current activity is greater than a threshold
(we set as 0.4 in the experiment). Since the accuracy on previous
activities is very sensitive to the parameters updating. During
training process on current activity, if the accuracy is very large,
the performance on previous activities usually decline sharply.
Therefore, in each iteration, if the accuracy on current activity
is greater than a threshold (we set as 0.95 in the experiment),
training process will be early stopped.

B. Dataset Description

We evaluate our model on two public datasets for HAR, which
are shown as follows.

� PAMAP2 [31] The Physical Activity Monitoring dataset
contains data of 12 different physical activities wearing 3
inertial measurement units (IMU) and a heart rate monitor
(HR). Three IMU monitors (worn on hand, chest and an-
kle) work with 100HZ while HR monitors are with 33HZ.
Each inertial measurement unit (IMU) are recognized as
one modality which contains 10-dimension measurements
totally (3D-accelerometer data, 3D-gyroscope data, 3D-
magnetometer data and 1D-temperature data).

� HHAR [33] The Heterogeneity Human Activity Recog-
nition dataset contains data on 6 different activities from
accelerometer and gyroscope from 12 devices (8 smart-
phones and 4 smartwatches). Smartphones and smart-
watches all generate 6-dimension measurements including
3D-accelerometer data and 3D-gyroscope data. The mea-
surements from accelerometer and gyroscope are recog-
nised as two modalities respectively.
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C. Compared Baselines

We evaluate the performance of the proposed multi-view
incremental learning model with the baselines shown as follows.

� DeepSense [40]: It was a framework with an architecture
using both CNN and RNN to capture relations among
different sensors and time-series data on HAR tasks.

� Single-modality EWC: We simply concatenate aligned
measurements of each modality and construct a single
view model to sequentially train HAR models. EWC
constraint is used in this model.

� Multi-modality EWC: We use multi-view neural network
but using EWC loss to sequentially train HAR models.
This is exactly the same structure as HarMI except that
CCA constraints are not added.

� HarMI-RNN: We use the gated recurrent unit recurrent
neural networks (GRU) to extract advanced features from
time-series sensing data rather than the attention mech-
anism used in HarMI. GRU is an variant of the LSTM
network but has a simpler structure. The rest architecture
of model is exactly the same as HarMI .

� LWF [27]: A method can be seen as a combination of
distillation networks and fine-tuning. It dynamically adds
new output layers to learn new tasks. First of all, network
parameters except those in the new output layer are frozen
and fine-tuning is used to train the new output layer param-
eters until convergence. Then the old network is used as
teacher network, adding distillation loss into loss function
and only using the data of new tasks to train the whole
network until convergence. The architecture of model is
same with HarMI

� iCaRL [30]: It is an incremental learning method based on
pseudo-rehearse way, which needs to retain the previous
training data. It uses distillation network to learn new
tasks in training state, and uses metric learning method to
classify. We preserve 77 350 records of PAMAP2 dataset
and 41 000 records of HHAR dataset for models’ training.
SGD optimizer with learning rate 0.1 are used in training
process. The architecture of model is same with HarMI

� IADM [38]: It is an incremental adaptive deep model
(IADM) which introduced attention mechanism into EWC
to overcome Catastrophic Forgetting in incremental learn-
ing. It contains multiple classifiers, and the prediction is
the weighted average of predictions from multiple clas-
sifiers using attention mechanism. While computing the
fisher matrix, it would incorporate the learned attention
weight into the corresponding model parameters in fisher
matrix.

� GeppNet [12]: It is a biologically inspired architecture
for incremental learning. The structure is much simple,
which projects the input vector into the SOM network then
predict a label using the linear regression. Considering that
the number of parameters of each method on the same
dataset are kept as the same as possible, we use 17× 17
SOM network on HHAR dataset (949 943 parameters)
and 9× 9 SOM network on PAMAP2 dataset (1 219 731
parameters) respectively.

D. Numerical Results

Experimental scenarios without repetitive activities:
Fig. 4(a)–Fig. 4(d) are average results on four metrics on
HHAR dataset, while Fig. 4(e)–Fig. 4(h) are results on PAMAP2
dataset.

� With the increase of number of trained activities, the
performance of all methods tend to become worse be-
cause of catastrophic forgetting. However, the proposed
multi-modality incremental learning model HarMI de-
cline more slowly on four metrics compared with other
baselines, which can achieve the best performance.

� Since DeepSense is not designed for the incremental
learning scenario, the performance of DeepSense de-
clines sharply when facing with the training of sequential
activities. As shown in the result, the proposed HarMI
can achieve 23.13% accuracy, 31.04% F1-score, 23.13%
recall, 32.16% precision improvement compared with
DeepSense when finishing the training of all activities.

� The performance of Multi-modality EWC is close to that
of our proposedHarMI . This is due to the fact that Multi-
modality EWC method just lacks the auxiliary output layer,
in other words, the correlation regularization term compar-
ing with HarMI . To consolidate the parameters that can
keep modalities consistent could definitely help improve
the performance when facing with multi-modality sensor
data in sequential training.

� On PAMAP2 dataset shown in Fig. 4(e)–Fig. 4(h), from
one trained activity to two trained activities, four metrics
all decline sharply. This is because that the first activity is
sitting, which is very similar with the second activity
standing that makes HarMI difficult to classify the
previous activities.

� The performance of HarMI-RNN is worse than HarMI,
which shows that the attention mechanism is more suitable
to handle time-series sensing data in incremental learning
than the RNN. Attention has a simpler structure which can
converge easier and faster.

� Fig. 6 depicts the confusion matrix of HarMI after
sequentially training all activities on HHAR dataset.
We can see that HarMI can maintain the knowledge
of previous activities and alleviate forgetting to a certain
extent. The accuracy of activities like stand, sit, stairs up
and bike are higher than 50%. However, the forgetting
problem cannot be completely prevent during the incre-
mental learning process. The activities like walk and stair
down is quite difficult for HarMI to classify.

Experimental scenarios with repetitive activities:
Fig. 5(a)–Fig. 5(d) are average results on four metrics on
HHAR dataset, while Fig. 5(e)–Fig. 5(h) are results on
PAMAP2 dataset.

� The proposed HarMI can achieve the best performance
compared with other baselines on four metrics.

� When facing with the repeated activities, the performance
of HarMI can keep in steady level. For example on
HHAR dataset shown in Fig. 5(a)–Fig. 5(d), from three
trained activity to four trained activities, four metrics
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Fig. 4. Experimental results on two public datasets: HHAR and PAMAP2 without repeated activities (T = 5 s in default). (a) Average accuracy
on HHAR. (b) Average F1-Score on HHAR. (c) Average reacll on HHAR. (d) Average precision on HHAR. (e) Average accuracy on PAMAP2. (f)
Average F1-Score on PAMAP2. (g) Average reacll on PAMAP2. (h) Average precision on PAMAP2.

all decline because of catastrophic forgetting. However,
from four trained activity to five trained activities, the
performance become better. This is due to the fact that
the third activity and the fifth activity all denote walk.
When training on repeated activities, the HarMI has
consolidate the important parameters for walk.

E. Parameter Analysis

To investigate the influence of different parameters that might
influence the performance of HarMI , we conduct experiments
on following parameters:

Length of time window T : The influence of length of time
window T on the performance is shown in Table III, in which

T varies from 3 s to 7 s. We can see that the proposed HarMI
can outperform all the other baselines on both datasets under
different length of time window. With the increment of T , both
accuracy and F1-score of HarMI tend to become larger as
shown in the result. It is because that the larger T denotes that
more sensor data in this time window can be used for model
training.

Attention weight: The comparison of the weights for the
attention layer on the modality fusion between HarMI and
Multi-modality EWC is depicted in Fig. 7. As mentioned be-
fore, the Multi-modality EWC method just lacks the auxiliary
output layer compared with HarMI . As shown in the result,
on PAMAP2 dataset, the attention weights of different views
in HarMI vary a lot. During the sequential training, modality

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on March 19,2024 at 07:26:21 UTC from IEEE Xplore.  Restrictions apply. 



948 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 26, NO. 3, MARCH 2022

Fig. 5. Experimental results on two datasets: HHAR and PAMAP2 with repeated activities (T = 5 s in default). (a) Average accuracy on HHAR. (b)
Average F1-Score on HHAR. (c) Average reacll on HHAR. (d) Average precision on HHAR. (e) Average accuracy on PAMAP2. (f) Average F1-Score
on PAMAP2. (g) Average reacll on PAMAP2. (h) Average precision on PAMAP2.

0, namely the IMU sensor on the hand modality, is the most
important, followed by the IMU sensor on the chest modality and
the IMU sensor on the ankle modality. However, Multi-modality
EWC method gives each modality equal weights, which leads to
the relative worse performance.

F. Comparison With Traditional Batch Training Method

To train the HAR model in an incremental way is necessary,
and particularly suitable in resources limited environments, such
as wearable devices, edge devices. When training the k-th activ-
ity, HarMI only uses the training data of current activity while
the batch training methods need to use all the training data of
the previous k activities. Therefore, we compare the proposed

HarMI with traditional batch training methods (DeepSense is
utilized in this work) considering both training time cost and
storage cost. The results are described as follows.

1) Training Time Cost: Since individuals’ activities are a
sequence Activity = {Ac1, Ac2, . . . , AcK} with time, for ex-
ample, sitting, walking, running, along with the sensor data.
With the increase of the number of activities, the training time
cost denotes the spent time from the start of training process to
the convergence on current activity. SGD optimizer is utilized
to update parameters. For HarMI , we set learning rate as
0.001, and λe as 5000 on two datasets mentioned before. And
we set the initial learning rate of batch training model as 0.1
for comparison. In addition, we adopt dropout in the proposed
HarMI framework, in which the rate is set as 0.2 in the first

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on March 19,2024 at 07:26:21 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: HARMI: HUMAN ACTIVITY RECOGNITION VIA MULTI-MODALITY INCREMENTAL LEARNING 949

Fig. 6. Confusion matrix of HarMI at the end of sequential training
for all activities in HHAR dataset.

TABLE III
EXPERIMENTAL RESULTS WITH DIFFERENT LENGTHS OF TIME WINDOWS
(T = 3 s, 5 s, 7 s) ON THE TWO PUBLIC DATASET: HHAR AND PAMAP2

WITHOUT REPEATED ACTIVITIES

layer, and 0.5 in the deep layers. It is worth noting that dropout
can make the optimizer randomly select part of parameters in the
updating phase, which is used to prevent forgetting of previous
activities. However, the adoption of dropout can also affect the
convergence rate and make the training time become longer.
Therefore, we conducted two groups of experiments: one with
dropout and the other without.

The training time cost with the increase of number of activities
on two datasets are depicted in Fig. 8 and Fig. 9. In detail, Fig. 8
and Fig. 9 depict the average time cost per epoch and total
time cost on two public datasets. The total time cost denotes
the spent time until the convergence of models when training
the k-th activity, which is the product of the average time cost
per epoch and the number of trained epochs. As shown in the
results, regarding batch training method, we can see that both
average time spent per epoch and total time cost increase with
the number of activities, while HarMI keeps relatively stable.
This is due to the fact that when training a new activity every
time, the batch training method needs to use all the data from all
previous activities while the training of HarMI is just based
on the data of current activity. Therefore, the increasing amount
of data leads to higher time cost. Within HHAR dataset, after
finishing training the last activity, the average time cost per epoch
with dropout of batch training method is about 2.1 times than
that of HarMI (1.7 times without dropout), and the total time
cost with dropout of batch training is about 57 times than that of
HarMI (59 times without dropout). The time cost difference
is even larger in PAMAP2 dataset. The average time cost of
batch training method is about 4 times (with dropout), and 4.5
times (without dropout) comparing withHarMI . Furthermore,
the total time cost of batch training is 101 times (with dropout),
and 66 times (without dropout) than HarMI .

2) Storage Cost: Storage is another kind of important re-
source within IoT devices. Therefore, we also measure the stor-
age cost on HarMI and the traditional batch training method.
We consider the number of stored data samples as the storage
cost during the training of the k-th activity. The results are
shown in Fig. 10. As for batch training methods, after learning
a new activity, the training data would be reserved for another
round of training. Therefore, with the increase of the number
of activities, the storage cost becomes larger. As shown in the
result, on HHAR dataset, more than 2 million training samples
need to be stored after learning 7 activities, while storing more
than 5 million training samples after learning 12 activities in
PAMAP2 dataset. Therefore, for devices with limited storage
capacities, e.g. mobile devices and kinds of sensors, with the
increase of the number of activities, the batch training methods
might not work to train due to the lack of storage space. In
comparison, the proposed HarMI only needs the training data
of the current activity during the training stage. And once
finishing the training of current activity, the training data can
be dropped. As can be seen from the figure, with the increase
of the number of activities, the storage cost of HarMI keeps
in quite low level. On HHAR dataset, the maximum storage
cost is 420 thousand training samples, while it is 630 thousand
on PAMAP2 dataset. Therefore, for the devices with limited
storage, even if the training data of all activities cannot be
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Fig. 7. Comparison of the weights of attention layer on modality fusion between HarMI and Mm-EWC on PAMAP2 dataset. (a) Attention weight
matrix of HarMI. (b) Attention weight matrix of Mm-EWC.

Fig. 8. Average time cost per epoch with the increase of number of
activities on two datasets: HHAR and PAMAP2 during training. (a)
Average time cost per epoch on HHAR without dropout. (b) Average
time cost per epoch on HHAR with dropout. (c) Average time cost per
epoch on PAMAP2 without dropout. (d) Average time cost per epoch
on PAMAP2 with dropout.

Fig. 9. Total time cost with the increase of number of activities on
two datasets: HHAR and PAMAP2. (a) Total time cost in training
process util the coverence of loss on HHAR without dropout. (b) Total
time cost in training process util the coverence of loss on HHAR with
dropout. (c) Total time cost in training process util the coverence of loss
on PAMAP2 without dropout. (d) Total time cost in training process util
the coverence of loss on PAMAP2 with dropout.

Fig. 10. Storage cost with the increase of number of activities on two
datasets: HHAR and PAMAP2 during training. (a) Number of data
in storage on HHAR (per thousand). (b) Number of data in storage on
PAMAP2 (per thousand).

stored, the model can still be updated to learn new activities
incrementally. Compared with the batch training method, the
storage cost can be greatly improved.

VI. CONCLUSION

Human activities recognition (HAR) based on multi-modality
sensor data in incremental learning way was an important yet
challenging task, which can save storage space in training pro-
cess and easily scalable to new kind of activities comparing
with traditional batch learning algorithms. In this paper, we
proposed a multi-modality incremental learning model called
HarMI to address the problem. The HarMI first adopted
attention mechanism to align sensor data with very different
frequencies to eliminate heterogeneity of different sensors. Then
as catastrophic forgetting is common yet challenging in incre-
mental learning, we overcome catastrophic forgetting from a
multi-modality perspective based on elastic weight consolida-
tion (EWC) framework by introducing the EWC regularization
term and the correlation regularization term to preserve knowl-
edge in previous activities. As demonstrated in the experiments,
the proposed model HarMI outperformed the state-of-the-art
baselines on two public datasets. We also showed the superiority
of HarMI comparing with batching training methods in terms
of time cost and storage cost, which envisions practical applica-
tions ofHarMI in resources-limited environments particularly.

The study of HAR in a multi-modality incremental way
achieves several cheerful results. The proposed HarMI can miti-
gate performance degradation caused by catastrophic forgetting.
However, there is still a performance gap between incremental
learning models and batch training methods. In addition, it is
easier to sample large number of unlabeled sensor data in real
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world scenarios, which could be utilized to improve the model’s
performance based on semi-supervised learning. Furthermore,
the sensor data produced by different individuals could be
quite heterogeneous, which is non-independently identically
distributed. How to eliminate the heterogeneity and utilize the
similarity in incremental HAR is an interesting topic.
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