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Exploiting Cross-Modal Prediction and Relation
Consistency for Semisupervised Image Captioning

Yang Yang , Hongchen Wei, Hengshu Zhu, Senior Member, IEEE, Dianhai Yu,
Hui Xiong, Fellow, IEEE, and Jian Yang , Member, IEEE

Abstract—The task of image captioning aims to generate
captions directly from images via the automatically learned cross-
modal generator. To build a well-performing generator, existing
approaches usually need a large number of described images
(i.e., supervised image-sentence pairs), requiring a huge effects
on manual labeling. However, in real-world applications, a more
general scenario is that we only have limited amount of described
images and a large number of undescribed images. Therefore, a
resulting challenge is how to effectively combine the undescribed
images into the learning of cross-modal generator (i.e., semisu-
pervised image captioning). To solve this problem, we propose
a novel image captioning method by exploiting the cross-modal
prediction and relation consistency (CPRC), which aims to utilize
the raw image input to constrain the generated sentence in the
semantic space. In detail, considering that the heterogeneous gap
between modalities always leads to the supervision difficulty while
using the global embedding directly, CPRC turns to transform
both the raw image and corresponding generated sentence into
the shared semantic space, and measure the generated sentence
from two aspects: 1) prediction consistency: CPRC utilizes the
prediction of raw image as soft label to distill useful supervision
for the generated sentence, rather than employing the traditional
pseudo labeling and 2) relation consistency: CPRC develops a
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novel relation consistency between augmented images and corre-
sponding generated sentences to retain the important relational
knowledge. In result, CPRC supervises the generated sentence
from both the informativeness and representativeness perspec-
tives, and can reasonably use the undescribed images to learn a
more effective generator under the semisupervised scenario. The
experiments show that our method outperforms state-of-the-art
comparison methods on the MS-COCO “Karpathy” offline test
split under complex nonparallel scenarios, for example, CPRC
achieves at least 6% improvements on the CIDEr-D score.

Index Terms—Cross-modal learning, image captioning, rela-
tion consistency, semisupervised learning.

I. INTRODUCTION

IN REAL-WORLD applications, object can always be rep-
resented by multiple source information, that is, multiple

modalities [1], [2]. For example, the news always contains
image and text information, the video can be divided into
image, audio, and text modalities. Along this line, the study
of cross-modal learning has emerged for bridging the con-
nections among different modalities, so as to better perform
downstream tasks, in which the image captioning is one of the
important research directions. Specifically, image captioning
aims to automatically generate natural language descriptions
for images, and has emerged as a prominent research problem
in both academia and industry [3]–[6]. For example, we can
automatically broadcast road conditions by learning visual
images to assist driving, and can also help visually impaired
users to read more conveniently. In fact, the challenge of image
captioning is to learn the generator between two heterogeneous
modalities (i.e., the image and text modalities), which needs to
recognize salient objects in an image using computer vision
techniques and generate coherent descriptions using natural
language processing.

To solve this problem, researchers first explore the neu-
ral encoder–decoder models [3], [7], which are composed of
a CNN encoder and an LSTM (or transformer) decoder. In
detail, these methods first encode the image into a set of
feature vectors using a CNN based model, with each segmen-
tation captures semantic information about an image region,
then sequentially decode these feature vectors to words via
an LSTM-based or transformer-based network. Furthermore,
Xu et al. [4], Lu et al. [8], and Huang et al. [9] adopted
the single or hierarchical attention mechanism that enables
the model to focus on particular image regions during decod-
ing process. To mitigate the incorrect or repetitive content,
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Fig. 1. Semisupervised image–sentence pairs, which include limited
described images and a huge number of undescribed images. It is notable
that we have two types of supervision: text and label ground truths. Described
images have all the supervisions, whereas the undescribed images do not have
any kind of supervision information here.

several researches consider to edit inputs independently from
the problem of generating inputs [5], [10]. However, note that
all these methods require full image–sentence pairs in advance,
that is, all the images need to be described manually, which is
hard to accomplish in real-world applications. Fig. 1 indicates
a more general scenario: a limited amount of described images
with corresponding label ground truths, and a large number of
undescribed images. Therefore, a resulting challenge is the
“Semisupervised Image Captioning,” which aims to conduct
the captioning task by reasonably utilizing the huge number
of undescribed images.

The key difficulty of semisupervised image captioning is
to design the pseudo supervision for the generated sen-
tences. Actually, there have been some preliminary attempts
recently. For example, [11], [12] propose unsupervised cap-
tioning methods, which combine the adversarial learning [13]
with traditional encoder–decoder models to evaluate the qual-
ity of generated sentences. In detail, based on the traditional
encoder–decoder models, these approaches employ adversar-
ial training to generate sentences indistinguishable from the
sentences within auxiliary corpus. In order to ensure that the
generated captions contain the visual concepts, they particu-
larly distill the knowledge provided by a visual concept detec-
tor into the image captioning model. However, the domain
discriminator and visual concept distiller do not fundamen-
tally evaluate the matching degree and structural rationality
of the generated sentence, so the captioning performance is
poor. As for semisupervised image captioning, a straightfor-
ward way is utilizing the undescribed images together with
their machine-generated sentences directly [14], [15] as the
pseudo image–sentence pair to train the model. However, lim-
ited amount of parallel data can hardly establish a proper
initial generator to generate precisely pseudo descriptions,
which may have negative affection to the training of mapping
function.

To circumvent these issues, we attempt to utilize the raw
image as pseudo supervision. However, heterogeneous gap

between modalities always leads the supervision difficulty if
we directly constrain the consistency between global embed-
ding of image and sentence. Thereby, we switch to use the
broader and more effective semantic prediction information,
rather than directly utilize the embedding, and introduce a
novel approach, dubbed semisupervised image captioning by
exploiting the cross-modal prediction and relation consis-
tency (CPRC). In detail, there are two common approaches
in traditional semisupervised learning: 1) pseudo labeling: it
minimizes the entropy of unlabeled data using predictions and
2) consistency regularization: it transforms the unlabeled raw
images using data augmentation techniques, then constrains
the consistency of transformed instances’ outputs. Different
form these two techniques, we design CPRC by comprehen-
sively considering the informativeness and representativeness:
1) prediction consistency: we utilize the soft label of image
to distill effective supervision for generated sentence and
2) relation consistency: we work on constraining the gener-
ated sentences and the augmented image inputs to have similar
relational distributions. Consequently, CPRC can effectively
qualify the generated sentences from perspectives of both the
prediction confidence and distribution alignment, thereby to
learn a more effective mapping function. Note that CPRC can
be implemented with any current captioning model, and we
adopt several typical approaches for verification [16], [17]. The
source code is available at https://github.com/njustkmg/CPRC.

In summary, the contributions in this article can be summa-
rized as follows.

1) We propose a novel semisupervised image captioning
framework for processing undescribed images, which is
universal for any captioning model.

2) We design the CPRC to measure the undescribed
images, which maps the raw image and correspond-
ing generated sentence into the shared semantic space,
and supervises the generated sentence by distilling the
soft label from image prediction and constraining the
cross-modal relation consistency.

3) In experiments, our approach improves the performance
under the semisupervised scenario, which validates that
knowledge hidden in the content and relation is effective
for enhancing the generator.

II. RELATED WORK

A. Image Captioning

Image captioning approaches can be roughly divided into
three categories as follows.

1) Template-based methods, which generate slotted cap-
tioning templates manually, and then utilize the detected
keywords to fill the templates [18], but their expres-
sive power is limited because of the need for designing
templates manually.

2) Encoder–decoder-based methods, which are inspired
by the neural machine translation [19]. For example,
Vinyals et al. [20] proposed an end-to-end framework
with a CNN encoding the image to feature vector and
an LSTM decoding to caption; Huang et al. [9] added
an attention-on-attention module after both the LSTM
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and the attention mechanism, which can measure the
relevance between attention result and query.

3) Editing-based methods, which consider editing inputs
independent from generating inputs. For example,
Hashimoto et al. [10] learned a retrieval model that
embeds the input in a task-dependent way for code
generation; Sammani and Elsayed [5] introduced a
framework that learns to modify existing captions from a
given framework by modeling the residual information.

However, all these methods need huge amount of super-
vised image–sentence pairs for training, whereas the scenario
with a large amount of undescribed images is more general in
real applications. To handle the undescribed images, several
attempts propose unsupervised image captioning approaches.
Feng et al. [11] distilled the knowledge in visual concept
detector into the captioning model to recognize the visual
concepts, and adopted sentence corpus to teach the caption-
ing model; Gu et al. [12] developed an unsupervised feature
alignment method with adversarial learning that maps the
scene graph features from the image to sentence modality.
Nevertheless, these methods mainly depend on employing
the domain discriminator for learning plausible sentences,
an thus are difficult for generating matched sentences. On
the other hand, considering the semisupervised image cap-
tioning, Mithun et al. [14] and Huang et al. [15] proposed
to extract regional semantics from un-annotated images as
additional weak supervision to learn visual-semantic embed-
dings. However, the generated pseudo sentences are always
unqualified to train the generator in real experiments.

B. Semisupervised Learning

Recently, deep networks achieve strong performance by
supervised learning, which requires a large number of labeled
data. However, it comes at a significant cost when label-
ing by human labor, especially by domain experts. To this
end, semisupervised learning, which permits harnessing the
large amounts of unlabeled data in combination with typically
smaller sets of labeled data, attracts more and more attention.
Existing semisupervised learning mainly considers two aspects
as follows.

1) Self-Training [21]: The generality of self-training is to
use a model’s predictions to obtain artificial labels for
unlabeled data. A specific variant is the pseudo label-
ing, which converts the model predictions of unlabeled
data to hard labels for calculating the cross entropy.
Besides, pseudo labeling is often used along with a con-
fidence thresholding that retains sufficiently confident
unlabeled instances. In result, pseudo labeling results in
entropy minimization, has been used as a component for
many semisupervised algorithms, and been validated to
produce better results [22].

2) Consistency Regularization [23]: Early extensions
include exponential moving average of model parame-
ters [24] or previous model checkpoints [25]. Recently,
data augmentation, which integrates these techniques
into the self-training framework, has shown better
results [26], [27]. A mainstream technology is to

produce random perturbations with data augmenta-
tion [28], and then enforce consistency between the
augmentations. For example, Xie et al. [26] proposed
unsupervised data augmentation with distribution align-
ment and augmentation anchoring, which encourages
each output close to the weakly augmented version of
the same input; Berthelot et al. [27] used a weakly
augmented example to generate an artificial label and
enforce consistency against strongly augmented exam-
ple. Furthermore, Sohn et al. [29] combined the pseudo
labeling and consistency regularization into a uni-
fied framework, which generates pseudo labels using
the model’s predictions on weakly augmented unla-
beled images, and constrains the prediction consistency
between weakly augmented and strongly augmented
versions. Note that the targets in previous semisuper-
vised methods are uniform and simple, that is, the
label ground truths. However, cross-modal semisuper-
vised learning is more complicated, that is, each image
has the corresponding sentence and label ground truth.
It is more difficult to build cross-modal generator than
single modal classifier with limited supervised data,
thereby it may causes noise accumulation if we directly
employ the traditional semisupervised technique for the
generated sentences.

The remainder of this article is organized as follows.
Section III presents the proposed method, including the model,
solution, and extension. Section IV shows the experimen-
tal results under different semisupervised settings. Section V
concludes this article.

III. PROPOSED METHOD

A. Notations

Without any loss of generality, we define the semisuper-
vised image–sentence set as: D = {{vi, wi, yi}Nl

i=1, {vj}Nu
j=1},

where vi ∈ Rdv denotes the ith image instance, wi ∈ Rdw

represents the aligned sentence instance, yi ∈ RC denotes the
instance label, yi,k = 1 if the ith instance belongs to the kth
label, otherwise is 0. vj is the jth undescribed image. Nl and
Nu (Nl � Nu) are the numbers of described and undescribed
instances, respectively.

Definition 1 (Semisupervised Image Captioning): Given
limited parallel image–sentence pairs {vi, wi, yi}Nl

i=1 and a huge
number of undescribed images {vj}Nu

j=1, we aim to construct
a generator G for image captioning by reliably utilizing the
undescribed images.

B. Framework

It is notable that CPRC focuses on employing the unde-
scribed images, and is a general semisupervised framework.
Thereby the image–sentence generator, that is, G : v → w,
can be represented as any state-of-the-art captioning model.
In this article, considering the effectiveness and reproducibil-
ity, we adopt the attention model, that is, AoANet [9], for
G as the base model. As shown in Fig. 2, AoANet applies
an attention on attention (AoA) module to the image encoder
and the caption decoder. AoA first generates an “information
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Fig. 2. Diagram of the proposed CPRC. For example, three weakly augmented images and the raw image are fed into the generator, which can generate
four corresponding sentences. Without any loss of generality, we adopt the AoANet [9] as the generator. Then, the embeddings of image inputs and generated
sentences are fed into the shared classifier to obtain the predictions. The model is trained by considering two objectives: 1) supervised loss includes the
generation and prediction losses for described images. In detail, generation loss measures the quality of generated sentence sequence, and prediction loss
considers the multilabel prediction of generated sentence and 2) unsupervised loss includes the prediction consistency and relation consistency for undescribed
images. In detail, prediction consistency utilizes the image’s prediction as pseudo labels for corresponding generated sentence, and relation consistency
constrains the generated sentences’ distribution with image inputs’ distribution.

vector” (i.e., I) and an “attention gate” (i.e., P) with two lin-
ear transformations. The information vector is derived from
the current context (i.e., the query Q) and the attention result
(i.e., V̂) via a linear transformation, and stores the newly
obtained information from the attention result together with
the information from the current context. The attention gate
is also derived from the query and the attention result via
another linear transformation with sigmoid activation fol-
lowed. Subsequently, AoA adds another attention by applying
the attention gate to the information vector using element-wise
multiplication and finally obtains the “attended information”
(i.e., Î). Details can refer to [9]. Note that the CPRC is a gen-
eral framework, which can apply to any existing captioning
model. AoANet only trains with the generation loss, which has
not made effective use of category labels. Thereby, AoANet
has no label predictor, and can not employ the undescribed
images.

The learning process of CPRC is shown in Fig. 2.
Specifically, CPRC first samples a minibatch of images from
the dataset D (including described and undescribed images),
and adopts the data augmentation techniques for each unde-
scribed image (i.e., each image has K variants). Then we can
acquire the generated sentences for both augmented images

and the raw image using the G, and compute the predictions
for image inputs and generated sentences using the shared
prediction classifier f . The model is trained through two main
objects:

1) supervised loss, which is designed for described
images, that is, supervised image–sentence pairs. In
detail, supervised loss considers both the label and
sentence predictions, including: a) generation loss,
which employs the cross-entropy loss or reinforcement
learning-based reward [16] of generated sentence and
ground truth sentence and b) prediction loss, which
calculates the multilabel loss between image/sentence’s
prediction and label ground truth.

2) unsupervised loss, which is designed for undescribed
images. In detail, unsupervised loss considers both the
informativeness and representativeness: a) prediction
consistency, which uses the image’s prediction as pseudo
label to distill effective information for generated sen-
tence, so as to measure the instance’s informativeness
and b) relation consistency, which adopts the relational
structure of the augmented images as the supervision
distribution for generated sentences, so as to measure
the instance’s representativeness. Therefore, in addition
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to the traditional loss for described images, we con-
strain the sentences generated from undescribed images
by comprehensively using the raw image inputs. The
details are described as follows.

C. Supervised Loss

1) Generation Loss: Given an image v, the decoder gener-
ates a sequence of sentence ŵ = {w1, w2, . . . , wT} describing
the image, T is the length of sentence. Then, we can minimize
the cross-entropy loss (i.e., �XE) or maximize a reinforcement
learning-based reward [16] (i.e., �RL), according to ground
truth caption w

�XE = −
T∑

t=1

log p(wt|w1:t−1)

�RL = −Ew1:T p[r(w1:T)] (1)

where w1:T denotes the target ground truth sequence, p(·) is
the prediction probability. The reward r(·) is a sentence-level
metric for the sampled sentence and the ground truth, which
always uses the score of some metric (e.g., CIDEr-D [30]).
In detail, as introduced in [16], captioning approaches tra-
ditionally train the models using the cross-entropy loss. On
the other hand, to directly optimize NLP metrics and address
the exposure bias issue, [16] casts the generative models in
the Reinforcement Learning terminology as [31]. In detail,
traditional decoder (i.e., LSTM) can be viewed as an “agent”
that interacts with the “environment” (i.e., words and image
features). The parameters of the network define a policy, that
results in an “action” (i.e., the prediction of the next word).
After each action, the agent updates its internal “state” (i.e.,
parameters of the LSTM, attention weights etc). Upon gen-
erating the end-of-sequence (EOS) token, the agent observes
a “reward” that is, for example, the CIDEr-D score of the
generated sentence.

2) Prediction Loss: On the other hand, we can measure the
generation with classification task using label ground truth y.
We extract the embeddings of image input and generated sen-
tence from the representation output layer. Considering that the
image and corresponding sentence share the same semantic
representations, the embeddings of image input and gener-
ated sentence can be further put into the shared classifier f
for predicting. Thereby, the forward prediction process can be
represented as

pv = f (Ee(v)), pw = f (De(Ee(v)))

where pv and pw are normalized prediction distribution of
image input and generated sentence. f (·) denotes the shared
classification model for text and image modalities. Without
any loss of generality, we utilize a network with three fully
connected layers here. Ee denotes the encoder, De represents
the decoder. Ee(v), De(Ee(v)) ∈ Rd represents the embed-
dings of image input and generated sentence. Note that Ee(v)

and De(Ee(v)) are the final embeddings of image/text region
embedding with mean(·) operator. The commonly used image
captioning dataset (i.e., the COCO dataset) is a multilabel
dataset, that is, different from the multiclass dataset that each
instance only has one ground truth, each instance has multiple

labels. Therefore, we utilize the binary cross-entropy loss
(BCELoss) here

�p =
∑

m∈{v,w}
H

(
pm, ym)

H
(
pm, ym) = −

∑

j

(
ym

j log pm
j +

(
1 − ym

j

)
log

(
1 − pm

j

)
(2)

where H(·) denotes the BCELoss for multilabel prediction,
and the model’s predictions are encouraged to be low-entropy
on supervised data.

D. Unsupervised Loss

1) Prediction Consistency: First, we introduce the augmen-
tation technique for transforming the images. Existing methods
usually leverage two kinds of augmentations: 1) weak aug-
mentation is a standard flip-and-shift strategy, which does not
significantly change the content of the input and 2) strong
augmentation always refers to the AutoAugment [32] and its
variant, which uses reinforcement learning to find an augmen-
tation strategy comprising transformations from the Python
Imaging Library.1 Considering that “strong” augmented (i.e.,
heavily augmented) instances are almost certainly outside the
data distribution, which leads to the low quality of generated
sentence, we leverage the “weak” augmentation instead. In
result, each image can be expanded to K + 1 variants, that is,
�(v) = {v0, v1, . . . , vK}, v0 denotes the raw input.

Then, we input the augmented image set to the image–
sentence generator G, and extract the embeddings of generated
sentences from the representation output layer. The embed-
dings are further put into the shared classifier for prediction.
Thereby, the prediction process can be represented as

pw
k = f (De(Ee(vk))), k ∈ {0, 1, . . . , K}. (3)

Similarly, we can acquire the prediction of image inputs: pv
k =

f (Ee(vk)), k ∈ {0, 1, . . . , K}. Considering that the com-
monly used image captioning datasets are multilabel datasets,
traditional pseudo labeling that leverages “hard” labels (i.e.,
the arg max of model’s output) is inappropriate, because it
is difficult to determine the number of hard labels for each
instance. As a consequence, we directly utilize the prediction
of image for knowledge distillation [33]

�pc =
∑

k∈{0,1,...,K}
H

(
pv

k, pw
k

)

H
(
pv

k, pw
k

) = −
∑

j

(
pv

kj
log pw

kj
+

(
1 − pv

kj

)
log

(
1 − pw

kj

))
(4)

where H(·) denotes the BCELoss.
2) Relation Consistency: Inspired by the linguistic struc-

turalism [34] that relations can better present the knowledge
than individual example, the primary information actually lies
in the structure of the data space. Therefore, we define a new
relation consistency loss �rc using a metric learning-based con-
straint, which calculates the KL divergence of the similarity
vectors between the image inputs and generated sentences. The
relation consistency aims to ensure the structural knowledge

1https://www.pythonware.com/products/pil/
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Fig. 3. Relation consistency. The blue and orange rectangles represent the
image domain and text domain, respectively. Any point inside the rectangles
represents a specific instance in that domain. Relation Consistency: for exam-
ple, given a tuple of image instances {v0, v1, v2, v3}, relation consistency
loss requires that the generated sentences, {w0, w1, w2, w3}, should share the
similar relation structure with the raw inputs.

using mutual relations of data examples in the raw inputs.
Specifically, each image input can be denoted as a bag of
K + 1 instances, that is, �(v), while the corresponding gener-
ated sentences can also be represented as a bag of instances,
that is, G(�(v)). With the shared classifier, the image and
sentence prediction can be formulated as

pv
k = f (Ee(vk)), k ∈ {0, 1, . . . , K}

pw
k = f (De(Ee(vk))), k ∈ {0, 1, . . . , K}.

With the predictions of image inputs and generated sentences,
the objective of relation consistency can be formulated as

�rc = KL
(
�

(
pv

0, pv
1, . . . , pv

K

)
,�

(
pw

0 , pw
1 , . . . , pw

K

))
. (5)

KL(a, b) = a log(a/b) is the KL divergence that penalizes
difference between the similarity distributions of image inputs
and generated sentences. � is a relation function, which mea-
sures a relation energy of the given tuple. In detail, � aims to
measure the similarities formed by the examples in semantic
prediction space

�
(
pv

0, pv
1, . . . , pv

K

) = [
qv

mn

]
m, n ∈ [0, . . . , K]

�
(
pw

0 , pw
1 , . . . , pw

K

) = [
qw

mn

]
m, n ∈ [0, . . . , K]

qv
mn = exp

(
dv

mn

)
∑

exp
(
dv·

)

qw
mn = exp

(
dw

mn

)
∑

exp
(
dw·

) (6)

where dv
mn = −Dist(pv

m, pv
n), dw

mn = −Dist(pw
m, pw

n ) mea-
sures the distance between (pv

m, pv
n), (pw

m, pw
n ), respectively,

Dist(pv
m, pv

n) = ‖pv
m − pv

n‖2 and Dist(pw
m, pw

n ) = ‖pw
m − pw

n ‖2.
qv

mn and qw
mn denote the relative instance-wise similarity.

Finally, we pull the [qv
mn] and [qw

mn] into vector form. In
result, the relation consistency loss can deliver the relation-
ship of examples by penalizing structure differences. Since
the structure has higher order properties than single output, it
can transfer knowledge more effectively, and is more suitable
for consistency measure.

E. Overall Function

In summary, with the limited amount of parallel image–
sentence pairs and large amount of undescribed images, we

Algorithm 1 Code of CPRC
Input:
Data: D = {{vi, wi, yi}Nl

i=1, {vj}Nu
j=1}

Parameters: λ1, λ2, τ , epoch number T
Output:
Image captioning mapping function: G

1: Initialize the G and f randomly;
2: for t = 1:T do
3: for sample mini-batch Bt,k from D do
4: Calculate supervised loss �s with described images

according to Equation 1 or Equation 2;
5: Calculate prediction consistency �pc with undescribed

images according to Equation 4;
6: Calculate relation consistency �rc with undescribed

images according to Equation 5;
7: Calculate overall loss L with �s, �pc and �rc according

to Equation 8;
8: Update model parameters of G, f using SGD;
9: end for

10: end for

define the total loss by combining (1), (2), (4), and (5)

L =
Nl∑

i=1

�s(vi, wi, yi) +
Nu∑

j=1

(
λ1�pc(vj) + λ2�rc(vj)

)

�s(vi, wi, yi) = �c(vi, wi) + �p(vi, wi, yi) (7)

where �c denotes the captioning loss, which can be adopted
as �XE or �RL in (1). Note that �c and �p are with same
order of magnitude, so we do not add hyperparameter here.
λ1 and λ2 are scale values that control the weights of dif-
ferent losses. In �s, we use labeled images and sentences
to jointly train the shared classifier f , which increases the
amount of training data, as well as adjusts the classifier to
better suit subsequent prediction of augmented images and
generated sentences. Furthermore, considering that the pseudo
labels pv and pw may exist noises, we can also adopt a confi-
dence threshold that retains confident instances. Equation (7)
can be reformulated as

L =
Nl∑

i=1

�s(vi, wi, yi) +
Nu∑

j=1

1
(

max
(

pv
j0

)
≥ τ

)

{
λ1�pc(vj) + λ2�rc(vj)

}

�s(vi, wi, yi) = �c(vi, wi) + �p(vi, wi, yi) (8)

where pv
j0

denotes the prediction probability of the jth raw
image input, and τ is a scalar hyperparameter denoting the
threshold above which we retain the generated sentences.
1(·) denotes the indicator function. Details are shown in
Algorithm 1. In each epoch, we randomly sample minibatch
data containing described and undescribed images, then utilize
the data in the minibatch to calculate both the supervised and
unsupervised losses. Finally, we calculate the gradient using
overall loss for back propagation. Loop the entire process until
reaching the defined epochs.
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IV. EXPERIMENTS

A. Datasets

We adopt the popular MS-COCO dataset [35] as mostly for-
mer related methods [9], [16], [17], [36], [37]. The MS-COCO
dataset contains 123 287 images (82 783 training images and
40 504 validation images), each labeled with five captions. The
popular test sets are divided into two categories: 1) online eval-
uation and 2) offline evaluation. Considering that all methods
are evaluated under semisupervised scenario, online evaluation
cannot be used, so we only use offline evaluation. The offline
Karpathy data split [38] contains 5000 images for validation,
5000 images for testing, and the rest for training. To construct
the semisupervised scenario, we randomly selected examples
with artificially set proportions as supervised data from the
training set, and the rest are unsupervised data.

B. Implementation Details

The target of CPRC is to train the generator G. In detail,
we employ the AoANet [9] structure for G as base model.
Meanwhile, we adopt fully connected networks for f with
three fully connected layers (with 1024 dimension for the
hidden layers). The dimension of original image vectors is
2048 and we project them to a new space with the dimen-
sion of 1024 following [9]. The K = 3, that is, each image
has three augmentations using random occlusion technique.
As for the training process, we train AoANet for 40 epochs
with a minibatch size of 16, and the ADAM [39] optimizer is
used with a learning rate initialized by 10−4 and annealed by
0.8 every three epochs. The parameters λ1 and λ2 are tuned in
{0.01, 0.1, 1, 10}, and τ = 0.1. The entire network is trained
on an Nvidia TITAN X GPU.

C. Baselines and Evaluation Protocol

The comparison models fall into three categories: 1) state-
of-the-art supervised captioning methods: SCST [16],
AoANet [9], AAT [36], ORT [37], GIC [17], Anchor [40] and
RSTNet [41]. Note that these methods can only utilize the
supervised image–sentence pairs; 2) unsupervised captioning
methods: Graph-align [12] and UIC [11]. These approaches
utilize the independent image set and corpus set for training;
and 3) state-of-the-art semisupervised method: A3VSE [15].

Moreover, we conduct extra ablation studies to evaluate each
term in our proposed CPRC: 1) AoANet+P, we combine the
label prediction consistency with the original AoANet gener-
ation loss as multitask loss (only using the supervised data);
2) AoANet+C, we combine the relation consistency loss with
the original AoANet generation loss as multitask loss (only
using the supervised data); 3) PL, we replace the prediction
consistency with pseudo labeling as traditional semisupervised
methods; 4) AC, we replace the relation consistency with aug-
mentation consistency as traditional semisupervised methods;
5) Embedding+, we replace the relation consistency loss with
embedding consistency loss, which minimizes the difference
between the embedding of image inputs and generated sen-
tences; 6) Semantic+, we replace the relation consistency loss
with prediction consistency loss, which minimizes the differ-
ence between the predictions of image inputs and generated
sentences; 7) Strong+, we replace the weak augmentation

with strong augmentation for CPRC; 8) w/o Prediction, CPRC
only retains the relation consistency loss in (8); 9) w/o
Relation, CPRC only retains the prediction consistency in
(8); and 10) w/o τ , CPRC removes the confidence thresh-
old in (7). For evaluation, we use different metrics, including
BLEU [42], METEOR [43], ROUGE-L [9], CIDEr-D [30],
and SPICE [44], to evaluate the proposed method and compar-
ison methods. All the metrics are computed with the publicly
released code.2 In fact, the CIDEr-D and SPICE metric is
more suitable for the image captioning task [30], [44]. One of
the problems with using metrics, such as BLEU, ROUGE-L,
CIDEr-D, and METEOR is that these metrics are primarily
sensitive to n-gram overlap. However, n-gram overlap is nei-
ther necessary nor sufficient for two sentences to convey the
same meaning [45].

D. Qualitative Analysis

Table I presents the quantitative comparison results with
state-of-the-art methods (i.e., 1% supervised data and 99%
unsupervised in the training set), it is notable that supervised
captioning methods can only develop the mapping functions
with supervised data, and leave out the unsupervised data. For
fairness, all the models are first trained under cross-entropy
loss and then optimized for CIDEr-D score as [9]. “−” repre-
sents the results have not given in the raw paper. The results
reveal the following.

1) Unsupervised approach, that is, UIC, achieve the worst
performance on all metrics under different losses. This
phenomenon verifies that the generated sentence may
mismatch the image with a high probability when only
considering the domain discriminator. Graph-align per-
forms better than supervised approaches, but worse than
A3VSE on most metrics, because it ignores to measure
specific matching.

2) Semisupervised method, that is, A3VSE, has little effect
on improving the captioning performance, for exam-
ple, cross-entropy loss/CIDEr-D score optimization only
improves 0.4/2.0 and 0.2/0.1 on CIDEr-D and SPICE
scores compared to AoANet, because it is more difficult
to ensure the quality of generated sentences.

3) CPRC achieves the highest scores among all compared
methods in terms of all metrics, on both the cross-
entropy loss and CIDEr-D score optimization stage,
except ROUGE-L on cross-entropy loss. For exam-
ple, CPRC achieves a state-of-the-art performance of
77.9/78.8 (CIDEr-D score) and 16.2/16.8 (SPICE score)
under two losses (cross entropy and CIDEr-D score),
that acquires 8.4/8.1 and 1.9/1.5 improvements com-
pared to RSTNet (i.e., SOTA supervised model), 8.4
and 1.8 improvements compared to Graph-align (i.e.,
SOTA unsupervised model), and 8.3/6.4 and 1.7/1.5
improvements compared to A3VSE (i.e., SOTA semisu-
pervised model). The phenomena indicates that, with
limited amount of supervised data, existing methods can-
not construct a well mapping function, whereas CPRC
can reliably utilize the undescribed image to enhance the
model.

2https://github.com/tylin/coco-caption
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TABLE I
PERFORMANCE OF COMPARISON METHODS ON MS-COCO “KARPATHY” TEST SPLIT, WHERE B@N, M, R, C, AND S ARE

SHORT FOR BLEU@N, METEOR, ROUGE-L, CIDER-D, AND SPICE SCORES

4) CPRC performs better than w/o τ on all metrics, which
indicates the effectiveness of threshold confidence.

E. Ablation Study

To quantify the impact of the proposed CPRC modules, we
compare CPRC against other variant models under various
settings. The bottom half of Table I presents the results.

1) AoANet+P and AoANet+C achieve better performance
than AoANet, which indicates that the prediction loss
and relation consistency loss can improve the gen-
erator learning, because the labels can provide extra
semantic information; meanwhile, AoANet+P performs
better than AoANet+C on most metric, which indi-
cates that prediction loss is more significant than relation
consistency.

2) PL and AC perform worse than the w/o Prediction
and w/o Relation, which verifies that traditional semisu-
pervised techniques considering pseudo labeling are
not as good as cross-modal semisupervised techniques
considering raw image as pseudo supervision.

3) Embedding+ performs worse than the Semantic+,
which reveals that embeddings are more difficult to
compare than predictions since image and text have
heterogeneous representations.

4) Strong+ performs worse than CPRC, which validates
that the strong augmentation may impacts the generated
sentence, and further affects the prediction.

5) Both the w/o Prediction and w/o Relation can improve
the captioning performance on most criteria, especially
on the important criteria, that is, CIDEr-D and SPICE.
The results indicate that both the prediction and relation
consistencies can provide effective supervision to ensure
the quality of generated sentences.

TABLE II
PERFORMANCE OF CPRC WITH DIFFERENT CAPTION MODEL ON

MS-COCO KARPATHY TEST SPLIT, WHERE B@N, M, R, C, AND

S ARE SHORT FOR BLEU@N, METEOR, ROUGE-L,
CIDER-D, AND SPICE SCORES

6) The effect of w/o Relation is more obvious, which shows
that prediction loss can further improve the scores by
comprehensively considering the semantic information.

7) CPRC achieves the best scores on most metrics, which
indicates that it is better to combine the content and
relation information.

F. CPRC With Different Captioning Model

To explore the generality of CPRC, we conduct more
experiments by incorporating CPRC with different supervised
captioning approaches, that is, SCST (encoder–decoder-based
model) and GIC (attention-based model). Note that we have
not adopted the editing-based method considering the repro-
ducibility, the results are recorded in Table II. We find that all
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Relationship between captioning performance with different ratio of supervised data. (a) BLEU@1. (b) BLEU@2. (c) BLEU@3. (d) BLEU@4.
(e) METEOR. (f) ROUGE-L. (g) CIDEr-D. (h) SPICE.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Relationship between caption performance with different ratio of supervised data (cross-entropy loss). (a) BLEU@1. (b) BLEU@2. (c) BLEU@3.
(d) BLEU@4. (e) METEOR. (f) ROUGE-L. (g) CIDEr-D. (h) SPICE.

methods, that is, SCST, GIC, and AoANet (results can refer to
the Table I), have improved the performance after combing the
CPRC framework. This phenomenon validates that CPRC can
well combine the undescribed images for existing supervised
captioning models.

G. Influence of the Supervised and Unsupervised Images

To explore the influence of supervised data, we tune the
ratio of supervised data, and the results are recorded in Figs. 4
and 5 with different metrics. Here, we find that, with the
percentage of supervised data increases, the performance of
CPRC improves faster than other state-of-the-art methods.
This phenomenon indicates that CPRC can reasonably utilize
the undescribed images to improve the learning of generator.
Furthermore, we validate the influence of unsupervised data,
that is, we fix the supervised ratio to 1%, and tune the ratio
of unsupervised data in {10%, 40%, 70%, 100%}, the results
are recorded in Fig. 6. Note that one of the problems by using
metrics, such as BLEU, ROUGE-L, CIDEr-D, and METEOR
to evaluate captions, is that these metrics are primarily sen-
sitive to n-gram overlap [9], [44]. Therefore, we only give
the results of CIDEr-D and SPICE here (refer to the sup-
plementary material for more details). We find that with the
percentage of unsupervised data increases, the performance of
CPRC also improves. This phenomenon indicates that CPRC
can make full use of undescribed images for positive training.

Fig. 6. Relationship between captioning performance with different ratio of
unsupervised data (CIDEr-D Score Optimization).

H. Influence of the Augmentation Number

To explore the influence of augmentation number, that is,
K, we conduct more experiments. In detail, we tune K in
{1, 2, 3, 4, 5} and recorded the results in Table III. The results
reveal that the CPRC achieves the best performance with
K = 3, for the reason that additional inconsistent noises
between images and sentences may be introduced with the
number of augmentations increases.

I. Influence of the Confidence Threshold

To explore the influence of confidence threshold, that is,
τ , we conduct more experiments. In detail, we tune the τ

in {0, 0.1, 0.4, 0.7} and recorded the results in Table IV. The
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Fig. 7. Examples of captions generated by CPRC and baseline models as well as the corresponding ground truths.

Fig. 8. (Best viewed in color) Examples of captions generated by augmented images.

results reveal that the performance of CPRC increases first,
and then decreases with the increasing of τ . The reason is
that fewer undescribed images are used with the increasing
of τ , thereby the generator training has not fully explored the
information in the unsupervised data.

J. Visualization and Analysis

Fig. 7 shows a few examples with captions generated
by our CPRC and two baselines, A3VSE and AoANet,
as well as the human-annotated ground truths. From these
examples, we find that the generated captions of baseline
models lack language logic and lose accuracy for the image
objects, while CPRC can generate accurate captions in high
quality.

Fig. 8 shows an example of augmented images and cor-
responding generated captions. We find that the generated
captions basically have similar semantic information, which

can help the prediction and relation consistencies for the
undescribed images.

K. Influence of Label Prediction

To explore the effect of prediction loss, we conduct more
experiments and exhibit several cases. Fig. 9 shows a few
examples with captions generated by our CPRC and two base-
lines, A3VSE and AoANet, as well as the human-annotated
ground truths. From these examples, we find that the label
prediction helps the generator to understand the image from
these words marked in red within the sentence generated by
CPRC, for example, in Fig. 9(a), the content of the image
is complicated and the bird is not obvious, which causes the
inconsistency of sentences generated by AoANet and A3VSE
with the ground truths. But CPRC can generate a good descrip-
tion of “bird” and “umbrella” by combining label prediction
information.
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Fig. 9. Examples of captions generated by CPRC and baseline models as well as the corresponding ground truths (GT1–GT5 are the five given ground truth
sentences).

TABLE III
PERFORMANCE OF CPRC WITH DIFFERENT AUGMENTATION NUMBER

ON MS-COCO KARPATHY TEST SPLIT, WHERE B@N, M, R, C,
AND S ARE SHORT FOR BLEU@N, METEOR, ROUGE-L,

CIDER-D, AND SPICE SCORES

L. Discussion

In this article, we concentrate the semisupervised image cap-
tioning task, in which the key challenge is the reasonable using
of undescribed images to improve the performance of genera-
tor. Compared to current semisupervised approaches that only

TABLE IV
PERFORMANCE OF CPRC WITH DIFFERENT τ ON MS-COCO KARPATHY

TEST SPLIT, WHERE B@N, M, R, C, AND S ARE SHORT FOR BLEU@N,
METEOR, ROUGE-L, CIDER-D, AND SPICE SCORES

consider the pseudo descriptions, we design a novel captioning
model by constraining the undescribed images from both the
prediction and relation consistencies. In experiments, we com-
prehensively compare with state-of-the-art captioning methods
to validate the effectiveness of proposed CPRC on popular
datasets. Furthermore, we conduct adequate ablation studies,
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which verify that: 1) the designed prediction and relation
consistencies can positively promote the use of undescribed
images; 2) CPRC can be effectively applied to any supervised
models; 3) CPRC is highly interpretable for parameter selec-
tion; and 4) CPRC has a good visualization effect, and the
significance of each module is reflected.

V. CONCLUSION

Since traditional image captioning methods usually work
on supervised multimodal data, in this article, we investigated
how to use undescribed images for semisupervised image cap-
tioning. Specifically, our method can take CPRC into consider-
ation. CPRC employs prediction distillation for the predictions
of sentences generated from undescribed images, and develops
a novel relation consistency between augmented images and
generated sentences to retain the important relational knowl-
edge. As demonstrated by the experiments, CPRC outperforms
state-of-the-art methods in various complex semisupervised
scenarios.
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