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A Multiscale Grouping Transformer with CLIP
Latents for Remote Sensing Image Captioning
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Abstract—Recent progress has shown that integrating multi-
scale visual features with advanced Transformer architectures is a
promising approach for remote sensing image captioning (RSIC).
However, the lack of local modeling ability in self-attention may
potentially lead to inaccurate contextual information. Moreover,
the scarcity of trainable image-caption pairs poses challenges in
effectively harnessing the semantic alignment between images
and texts. To mitigate these issues, we propose a Multiscale
Grouping Transformer with Contrastive Language-Image Pre-
training (CLIP) latents (MG-Transformer) for RSIC. First of
all, a CLIP image embedding and a set of region features
are extracted within a Multi-level Feature Extraction module.
To achieve a comprehensive image representation, a Semantic
Correlation module is designed to integrate the image embedding
and region features with an attention gate. Subsequently, the
integrated image features are fed into a Transformer model. The
Transformer encoder utilizes dilated convolutions with different
dilation rates to obtain multiscale visual features. To enhance
the local modeling ability of the self-attention mechanism in the
encoder, we introduce a Global Grouping Attention mechanism.
This mechanism incorporates a grouping operation into self-
attention, allowing each attention head to focus on different
contextual information. The Transformer decoder then adopts
the Meshed Cross-Attention mechanism to establish relationships
between various scales of visual features and text features. This
facilitates the generation of captions for images by the decoder.
Experimental results on three RSIC datasets demonstrate the
superiority of the proposed MG-Transformer. The code will
be publicly available at https://github.com/One-paper-luck/MG-
Transformer.

Index Terms—Remote sensing image captioning, Transformer,
CLIP, multiscale, Grouping.

I. INTRODUCTION

REMOTE sensing image captioning (RSIC) aims to trans-
late remote sensing images (RSIs) into natural language

descriptions, enabling non-experts to intuitively understand the

This work was supported in part by the Jiangsu Geological Bureau Research
Project under Grant 2023KY11, in part by the Open Research Fund in
2021 of Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense
under Grant JSGP202101 and Grant JSGP202204, in part by the National
Natural Science Foundation of China under Grant 62302255, and in part
by the China Postdoctoral Science Foundation 2023TQ0181. (Corresponding
authors: Liang Xiao; Jing Wang.)

Lingwu Meng, Ran Meng, and Yang Yang are with the School of
Computer Science and Engineering, Nanjing University of Science and
Technology, Nanjing 210094, China (e-mail: menglw815@njust.edu.cn;
rmeng@njust.edu.cn; yyang@njust.edu.cn). Jing Wang is with the Depart-
ment of Automation, Tsinghua University, Beijing 100084, China (e-mail:
wangjing-wj@mail.tsinghua.edu.cn).

Liang Xiao is with the School of Computer Science and Engineering,
Nanjing University of Science and Technology, Nanjing 210094, China,
and also with the Key Laboratory of Intelligent Perception and Systems
for High-Dimensional Information of Ministry of Education, Nanjing Uni-
versity of Science and Technology, Nanjing 210094, China (e-mail: xiao-
liang@mail.njust.edu.cn).

content of the images. Compared with traditional tasks such
as object detection [1]–[4] and scene classification [5]–[8] for
RSIs, the RSIC task further elucidates the rich information
in RSIs and provides intuitive guidance for a wide range
of application fields such as disaster monitoring, agricultural
management, and urban planning.

Despite substantial advancements in natural image caption-
ing (NIC), the investigation of RSIC remains largely unex-
plored. The main challenges in RSIC arise from two aspects:
First, an RSI often comprises a vast number of objects with
varying scales and different categories, making it difficult to
achieve effective abstraction and representation of the RSI.
Second, the limited quantity of image-text pairs in existing
RSIC datasets can result in reduced model generalization and
potentially inaccurate predictions.

To mitigate the first challenge, early RSIC methods [9],
[10] utilized Convolutional Neural Networks (CNNs) [11] to
extract region features from a specific layer as image repre-
sentations. Despite exhibiting decent performance, they cannot
effectively capture objects at different scales and may overlook
important objects. To overcome this limitation, there has been
an increasing emphasis among researchers on exploring the
multiscale information included in RSIs. These methods [12]–
[14] extracted multiscale features from different convolutional
layers of CNNs and fed the features into a text decoder
to generate sentences. Recent studies [15], [16] have also
integrated attention mechanisms with multiscale features to
discern the importance of features at different scales. Expand-
ing on this approach, the research conducted by [17]–[19] has
further employed the self-attention mechanism, renowned for
its exceptional ability to capture global information. However,
it is worth noting that the self-attention mechanism lacks
the ability to effectively model local contextual information
[20]. This limitation hinders its ability to capture fine-grained
dependency relationships.

To address the second challenge, one straightforward way is
to employ data augmentation techniques to expand the image-
text pairs. However, these techniques may result in a semantic
mismatch between the expanded images and the corresponding
captions. For example, the rotation operation may alter the
position of objects, while the cropping operation may result
in the loss of important objects.

To tackle the challenges mentioned above, this paper pro-
poses a solution that combines the multiscale features plus
self-attention mechanism framework, along with the utilization
of CLIP image embedding [21], [22]. In order to enhance the
self-attention’s ability to model local context, we introduce
a novel Global Grouping Attention mechanism (GGA) by
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incorporating a grouping operation. The integration of GGA
facilitates improved interaction between the multiscale features
and ensures a more comprehensive understanding of the image
context. Furthermore, to overcome the data scarcity issue, we
leverage the CLIP image embedding, which is known for its
impressive zero-shot capabilities and robustness to variations
in image distribution [23]. Specifically, we design a Semantic
Correlation (SC) module to integrate the global CLIP image
embedding and the local region features with an attention gate.

Based on the aforementioned idea of enhancing the self-
attention’s local modeling ability and leveraging the knowl-
edge from the pre-trained vision-language CLIP model, we
propose a Multiscale Grouping Transformer with CLIP latents
(MG-Transformer) to improve RSIC, as shown in Figure. 1.
The proposed framework consists of three main components: a
Multi-level Feature Extraction (MFE) module, an SC module,
and a Transformer that incorporates dilated convolution, GGA,
and MCA. Firstly, the MFE module extracts global and region
features using the pre-trained CLIP model and the ResNet-
152 [24], respectively. Subsequently, the SC module combines
these features to establish global-local semantic correlations,
yielding rich visual features. The obtained features are then
fed into the Transformer. The Transformer encoder employs
dilated convolutions with different dilation rates to obtain
multiscale visual features and further focuses on valuable local
information using the GGA. The decoder utilizes the MCA
to integrate and correlate multiscale visual features with text
features. Finally, the output of the decoder is used to generate
sentences for RSIs.

The main contributions of this work can be summarized as
follows:

(1) To enhance the local modeling ability of the self-
attention mechanism, we propose a GGA mechanism that
utilizes a grouping mechanism to enable each attention head
to focus on distinct localized information.

(2) We propose to address the issue of inadequate image-
caption pairs by incorporating the CLIP image embedding
as supplementary knowledge. This embedding provides the
model with abundant pre-aligned image-text information, en-
abling more semantically accurate descriptions for RSIs. To
seamlessly integrate this embedding into the captioning frame-
work, we design an SC module that combines it with the region
features using an attention gate.

(3) Extensive experiments are conducted on three RSIC
datasets, demonstrating the superior performance of the pro-
posed method.

II. RELATED WORK

In this section, we will review the related works from two
aspects: natural image captioning and remote sensing image
captioning.

A. Natural Image Captioning

Experts initially focused on the natural image caption-
ing (NIC) task. Early template-based methods [25]–[27] and
retrieval-based methods [28]–[30] heavily rely on manually
designed features and retrieval results, resulting in less natural

descriptions that are unable to adapt well to the content
of the images. However, with the advent of deep learning-
based methods [31]–[34], significant improvements have been
achieved. Vinyals et al. [31] first proposed the vanilla encoder-
decoder paradigm. In the encoder, a CNN was applied to
extract high-level visual features from input images. In the
decoder, a recurrent neural network (RNN) [35] was trained
to generate sentences based on the visual features. Later, Xu
et al. [32] made significant advancements by incorporating the
attention mechanism into the CNN-RNN framework. Rennie
et al. [36] introduced the self-critical training strategy based
on reinforcement learning mechanisms to further improve the
performance of image captioning. By combining the self-
critical training method with the sampling operation, the
discrepancy between training and inference can be mitigated.
Unlike the above methods, Anderson et al. [33] extracted the
more expressive object features with an object detection model
Faster R-CNN [37]. Then, They encoded the relationships
between the objects and employed a two-layer LSTM decoder
to facilitate caption generation. In recent years, most state-
of-the-art methods for image captioning have incorporated
advanced Transformer frameworks. The Transformer is pri-
marily composed of self-attention, which enables it to capture
global dependencies. Huang et al. [38] proposed an Attention
on Attention (AoA) that enhances self-attention by examining
the correlation between attention outputs and queries. Cornia
et al. [39] presented a Memory-Augmented Attention, which
extended self-attention by modeling a priori knowledge on
relationships between objects.

B. Remote Sensing Image Captioning

Inspired by NIC, Qu et al. [9] first proposed a deep
multimodal neural network model based on the CNN-RNN
framework for RSIC. Later, Lu et al. [10] demonstrated that
attention-based methods can achieve superior performance
compared to the multimodal model, which laid the foundation
for RSIC. To produce more detailed and accurate captions,
several attribute-based methods [15], [16] have been proposed.
Zhang et al. [15] proposed an attribute attention to combine
high-level features extracted from the relatively deep fully
connected layer (or softmax layer) with low-level features
extracted from the relatively shallow convolution layers. In the
same year, Zhang et al. [16] proposed a label-attention mech-
anism to utilize label information to guide the computation
of attention masks. Furthermore, Zhang et al. [17] proposed
a global visual feature-guided attention mechanism to filter
out redundant feature components in the fused local features
and global features through an attention gate. However, these
methods do not express multiscale information about RSIs,
which is crucial for the RSIC task. To address this issue, Wang
et al. [12] collected features from conv4 and conv5. These
features were concatenated as the image feature representation
after a self-attention and a gated cross-attention. Afterward,
Li et al. [13] adopted the efficient spatial pyramid (ESP)
[40] to extract the multiscale visual features from the region
features obtained by a pre-trained CNN, which are fed to an
adaptive average pooling operation for a global representation.
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Fig. 1. Framework of the proposed MG-Transformer in this paper. The Multi-level Feature Extraction module employs a pre-trained CNN (ResNet-152) and
CLIP image encoder to extract region features and the image embedding from an input image, respectively. The Semantic Correlation module integrates them
to obtain refined features. Then, the refined features are fed into a Transformer. The Transformer encoder adopts dilated convolutions with different dilation
rates to obtain multiscale visual features. The Global Grouping Attention learns more valuable information from multiscale visual features. The Transformer
decoder establishes intermodal interactions between different scales of visual features and text features, and calculates the probability pt over a vocabulary of
possible words. For the sake of clarity, fully connected layers are not shown. c⃝, ⊙, σ⃝, ⊗, and GAP represent concatenation operation, Hadamard product,
sigmoid activation function, matrix multiplication, and global average pooling operation, respectively.

Then, the global representation was concatenated with region
features and then fed into a two-layer LSTM decoder to
generate captions.

Besides the CNN-RNN framework, some methods leverage
the Transformer framework to enhance RSIC. Wang et al.
[41] designed a two-stage Word–Sentence framework. They
extracted valuable words through a classification task and
utilized the Transformer framework to organize these words
into coherent sentences. Liu et al. [14] proposed a multilayer
aggregated Transformer (MLAT). They fused multiscale visual
features extracted from a CNN and then fed these features into
a Transformer to generate sentences. Chen et al. [15] proposed
a pure Transformer architecture with caption-type controller.
They adopted a multiscale Vision Transformer (ViT) for image
representation and introduced a standard Transformer decoder
to generate sentences. Recently, a series of works [42]–[46]
have been proposed for remote sensing image change caption-
ing (RSICC), which aims to describe the differences between
bitemporal images by natural language. Liu et al. [42] achieved
impressive results by leveraging pre-trained large language
models. To address the multiscale problems in RSICC, Liu et
al. [46] focused on changing regions and sufficiently extracted
multiscale visual features from different layers.

Despite the significant progress achieved by multiscale
methods, they often fail to adequately consider the interactions
between visual and textual features at different scales, leading
to inaccurate descriptions. In this paper, we propose a novel
MG-Transformer framework to address this issue by inte-
grating the contributions of these interactions through MCA.
Furthermore, we incorporate a grouping mechanism into self-
attention to enhance the local modeling ability of the self-
attention mechanism.

III. APPROACH

A. Overall Framework

The overall framework of the proposed method, MG-
Transformer, is depicted in Figure. 1. It consists of an MFE
module, an SC module, and a Transformer with dilated convo-
lution, GGA and MCA. Specifically, an image embedding and
a set of region features are first extracted from the MFE mod-
ule. Then, the SC module integrates the image embedding and
region features with an attention gate to obtain refined features.
The refined features are subsequently fed into the Transformer
to promote the captioning process. The Transformer encoder
employs dilated convolutions with different dilation rates to
capture multiscale visual features. Furthermore, each encoder
layer employs a GGA to learn the fine-grained relationships
among feature groups from different regions. Subsequently, the
output of the GGA is fed into a position-wise fully connected
feed-forward network to obtain the output of the encoder layer.
The Transformer decoder leverages the MCA to facilitate
intermodal interactions between text features and multiscale
visual features from the encoder, and finally generates a
sentence for the input RSI.

B. Multi-level Feature Extraction

We extract region features and the CLIP image embedding
to obtain a comprehensive semantic representation for an RSI.
The region features capture the local information of the RSI,
while the image embedding aggregates the information of the
entire RSI.

Following a standard practice in RSIC [9], [10], we adopt
the ResNet-152 pre-trained on ImageNet [47] to extract N
region features X = {x1, ...,xN} ∈ RN×d1 .
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Then, we adopt the pre-trained CLIP image encoder with
ViT-B/32 backbone to extract the representation of the whole
image, denoted as xclip ∈ Rd2 . By using the ViT encoder, the
CLIP image embedding is able to encode visual clues from
all image patches. Moreover, the integration between vision
and text enriches the embedding of information from both
modalities.

By employing these multi-level feature representations, we
acquire rich local and global semantic information from RSIs.

C. Semantic Correlation Module

Drawing inspiration from the AoA mechanism [38], we
devise the SC module to integrate the CLIP image embedding
and the region features. This integration is achieved through
an attention gate, which serves to strengthen the correlation
between the attention queries and their corresponding attention
results. First of all, the image embedding xclip is aligned with
the number of region features by a copy operation to obtain
the image embedding matrix Xclip ∈ RN×d2 . Both the region
features X and the image embedding matrix Xclip are mapped
to the same d-dimensional space through linear projections:

Xr = XW1 + b1, (1)

Xc = XclipW2 + b2, (2)

where W1 ∈ Rd1×d and W2 ∈ Rd2×d are learnable
parameter matrices; b1 ∈ Rd and b2 ∈ Rd are biases.

Subsequently, the region features Xr ∈ RN×d are pro-
cessed through a self-attention mechanism, which integrates
the interrelations among regions into Xr and obtains the
feature Z ∈ RN×d:

Z = Att(XrWq,X
rWk,X

rWv)

= softmax

(
(XrWq)(X

rWk)
T

√
d

)
× (XrWv),

(3)

where Wq ∈ Rd×d, Wk ∈ Rd×d, and Wv ∈ Rd×d are
learnable parameter matrices.

Finally, the feature Z is concatenated with the image em-
bedding matrix Xc to form an information matrix I, which
integrates the local and global semantic information, resulting
in a more comprehensive and enriched feature representation.
The computation of the information matrix I ∈ RN×d can be
expressed as follows:

I = Concat(Z,Xc)WI + bI, (4)

where WI ∈ R2d×d is the learnable parameter matrix and
bI ∈ Rd is the bias; Concat means concatenation operator.

To filter irrelevant or weakly correlated content in the
information matrix I, we design an attention gate G ∈ RN×d

based on the sigmoid activation function:

G = σ(Concat(Z,Xc)WG + bG), (5)

where WG ∈ R2d×d is the learnable parameter matrix and
bG ∈ Rd is the bias; σ is the sigmoid activation function. The
attention gate G selectively emphasizes significant information
within the information matrix, providing a more discriminative

image representation. Based on this gate, the refined features
X̂ ∈ RN×d can be calculated as:

X̂ = G⊙ I, (6)

where ⊙ denotes Hadamard product. Afterwards, the refined
features X̂ are fed into the Transformer structure.

D. Multiscale Grouping Transformer

Our Transformer is composed of a multiscale encoder and
a meshed decoder, both of which consist of stacked attention
layers. In the multiscale encoder, we first extract multiscale
visual features using dilated convolutions with different di-
lation rates. Then, the GGA transforms these features of
each scale into a series of intermediate states, which are
enhanced with the contextual information in between. The
meshed decoder adopts the MCA to encourage intermodal
interactions between different scales of visual features and
text features, subsequently generating captions word by word.
We will start by introducing GGA, followed by a multiscale
encoder based on GGA, and then the meshed decoder based
on MCA. The details are explained below.

Global Grouping Attention: Given a set of image regions
(In our context, the region features correspond to the output
feature X̃ ∈ RN×d of the dilated convolution), we introduce
the GGA that incorporates a grouping mechanism into self-
attention to enhance its local modeling ability.

To expedite training, we initially categorize the regions into
different groups based on the original region features X in
an offline manner. Technically, a global feature xg ∈ Rd1 is
first obtained by performing an average pooling operation on
region features X as shown in Figure. 1(d). We then adopt
the dot product similarity between xg and X to measure the
correlation between the global feature and region features in
the same feature space. Subsequently, their similarity scores
S = {s1, ..., sN} ∈ RN are normalized using a softmax
function. The i-th region is assigned to Group j if si within
the interval (j − 1/J, j/J ]. As a result, we can get J groups.

To enhance the robustness and generalization ability of the
captioning model, we randomly assign λ different groups to
each headi of self-attention, which can be achieved through
building a grouping mask matrix mi ∈ RN×N . The headi

can be calculated as follows:

headi =

(
softmax(

QiK
T
i√

D
)⊙mi

)
×Vi, (7)

where Qi ∈ RN×D, Ki ∈ RN×D and Vi ∈ RN×D are
obtained by linearly projecting input region features X̃; h is
the number of heads; D is the scaling factor, and D = d/h;
⊙ denotes the Hadamard product. While the original self-
attention mechanism lacks effective modeling of local con-
textual information by having every attention head focus on
all regions [20], our approach encourages each attention head
to concentrate on semantically relevant regions. During the
attention operation, only objects within those groups contribute
to enhancing the target object feature, thereby reinforcing the
contextual relationships among local regions.
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Fig. 2. (a) Multiscale encoder and (b) Meshed decoder for MG-Transformer.

Finally, we concatenate all h heads and obtain the output
feature VGGA:

VGGA = Concat(head1, ...,headh)×Wh, (8)

where Wh ∈ Rd×d is the learnable parameter matrix.
Multiscale Encoder: As can be seen from Figure. 2(a),

the encoder is composed of a stack of B identical layers.
Each encoding layer stacks a dilated convolution, a GGA, and
a position-wise fully connected feed-forward network (FFN)
in turn. We incorporate a residual connection and a layer
normalization around the 2nd and 3rd sublayers, respectively.
The inputs to each encoding layer include the output of the
previous encoding layer (we use the output X̂ of the SC
module for the first layer) and a set of grouping mask matrices
M = {m1, ...,mh} ∈ Rh×N×N .

Let’s consider the first encoder layer as an example. The
output X̂ of the SC module is fed into a dilated convolution
to obtain new scale features X̃1 ∈ RN×d. Then, X̃1 and the
grouping mask matrices M are fed into a GGA. The obtained
features VGGA are then passed through an FFN layer to ac-
quire the output Venc

1 of the first encoder layer. Consequently,
we can obtain the outputs Venc = {Venc

1 , ...,Venc
B } of all

encoder layers as the output of the multiscale encoder.
Meshed Decoder: To construct relationships between dif-

ferent scale visual features and text features, we adopt the
meshed decoder architecture from the M2 Transformer [39].
As can be seen from Figure. 2(b), the decoder is built with
a stack of B identical decoding layers. Each decoder layer is
composed of an MCA and an FFN layer. We use a residual
connection and layer normalization around each sublayer.
Similar to the encoder, the inputs to each decoding layer
include the output of the previous decoding layer and the
outputs Venc = {Venc

1 , ...,Venc
B } of the encoder. For the first

layer, we input the text sequence Y = {y1, ...,yT } ∈ RT×d

instead of the previous layer output, where T denotes the
length of the text sequence.

In the case of the first decoding layer, we initially perform a
masked attention mechanism to focus on the left subsequence
Ymask. Subsequently, the cross-attention is employed to en-

able interactions between text features and multiscale visual
features from all encoder layers:

Si = Att(YmaskW
di
q ,Venc

i Wdi

k ,Venc
i Wdi

v ), (9)

where Wdi
q ∈ Rd×d, Wdi

k ∈ Rd×d, and Wdi
v ∈ Rd×d are

learning parameter matrices; Venc
i is the output of the i-th

encoder layer. Then, we measure the correlation between the
attention results and the left subsequence to obtain a weight
matrix:

αi = σ
(
Concat(Ymask,S

i)Wα
i + bα

i

)
, (10)

where σ is the sigmoid activation function; Wα
i ∈ R2d×d

is the learnable parameter matrix; bα
i ∈ Rd is the bias. The

contributions of all encoder layers and their respective weight
matrix are weighted in MCA as follows:

MCA(Venc,Ymask) =

B∑
i=1

αi ⊙ Si. (11)

After an FFN layer, we acquire the output Vdec
1 of the first

decoding layer.
The output Vdec

B of the last decoding layer is regarded as
the decoder output. Subsequently, Vdec

B is sequentially fed into
a fully connected layer and a softmax layer to calculate the
probability over a vocabulary of possible words.

E. Training and Objectives

Training with Cross Entropy Loss: Following a standard
practice in image captioning [25], [38], [39], we first train our
model with a word-level cross entropy loss (XE):

LXE(θ) = −
T∑

t=1

log(pθ(y
∗
t |y∗1:t−1)), (12)

where y∗1:t−1 = [y∗1 , . . . , y
∗
t−1] represents a portion of the

ground truth sequence, specifically the sequence of words from
the start till the (t− 1)-th time step; T is the maximum time
step; θ denotes the variable parameter of the model.

CIDEr-D Score Optimization: Recent studies [36], [48],
[49] have demonstrated that the XE training may lead to
the exposure bias problem, where the model always makes
predictions on the true labels during training. Consequently,
we employ the Self-Critical Sequence Training method [36]
to further train our model. During the training process, we
employ a beam search strategy to select the top-k sentences
with the highest probability. Then we compute their CIDEr
scores as rewards. To update the model parameters, the gradi-
ent expression is formulated as follows:

∇θLRL(θ) = −1

k

k∑
i=1

((r(wi)− b)∇θ log pθ(w
i)), (13)

where k is the number of samples; wi denotes the i-th sentence
sampled in the beam; r(·) represents the reward function; b =
1/k

∑k
i=1 r(w

j) is the baseline reward, which is introduced
to ensure training stability.
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IV. EXPERIMENT RESULTS

A. Datasets

This paper evaluates the proposed MG-Transformer on three
RSIC datasets: Sydney-Captions [9], UCM-Captions [10], and
RSICD [10].

Sydney-Captions: This dataset is a collection of 600 images
carefully selected from the Sydney Dataset [50] and contains
7 land cover categories. The size of each image within the
dataset is consistently maintained at a resolution of 500 × 500
pixels, ensuring uniform scale and quality throughout. Each
image is associated with five human-annotated captions.

UCM-Captions: This dataset is a collection of 2100 images
carefully selected from the UC Merced Land Use [51] and con-
tains 21 land cover categories. The size of each image within
the dataset is consistently maintained at a resolution of 256
× 256 pixels, ensuring uniform scale and quality throughout.
Each image is associated with five human-annotated captions.

RSICD: It consists of 10921 RSIs selected from the AID
dataset [52] and other platforms, such as Baidu Map, Ma-
pABC. In addition, it contains 30 land cover categories. The
size of each image within the dataset is consistently maintained
at a resolution of 224 × 224 pixels, ensuring uniform scale and
quality throughout. Each image is associated with five human-
annotated captions.

B. Evaluation Metrics

To evaluate the quality of the generated captions, we il-
lustrate the RSIC model performance by ten metrics: BLEU-n
[53], METEOR [54], ROUGEL [55], CIDEr [56], SPICE [57],
and S∗

m [17]. They can be calculated by the COCO caption
evaluation tool1.

BLEU-n: Bilingual evaluation understudy (BLEU) is a
metric used to measure the quality of machine-generated
translations. It was developed by IBM Research. BLEU’s main
strength lies in its simplicity and efficiency, which has made it
one of the most commonly used metrics in the field of machine
translation. The “n” in BLEU-n refers to the maximum length
of the n-grams (contiguous sequence of “n” words) that the
metric will consider when comparing a candidate translation
against one or more reference translations. For example,
BLEU-1 only looks at unigrams (single words), BLEU-2
considers up to bigrams (two-word phrases), BLEU-3 up to
trigrams (three-word phrases), and so on. It calculates the
proportion of phrase overlap between the candidate sentence
and reference sentence to measure quality. The value of this
evaluation metric is between 0 and 1. The closer the score is
to 1, the higher the quality of the translation.

METEOR: Metric for Evaluation of Translation with Ex-
plicit ORdering (METEOR) is another metric used to evaluate
the quality of machine-generated translations. Developed by
researchers at the Language Technologies Institute at Carnegie
Mellon University, METEOR aims to address some of the
shortcomings found in earlier metrics such as BLEU. It com-
putes a harmonic mean of the precision and recall values, with
recall being weighted higher to prioritize the “completeness”

1https://github.com/tylin/coco-caption

of the translated information. METEOR often correlates better
with human judgement compared to BLEU.

ROUGEL: Recall-Oriented Understudy for Gisting Evalua-
tion (ROUGE) is a widely used set of metrics for evaluating
automatic summarization and machine translation. It was
originally developed by Chin-Yew Lin at the University of
Southern California Information Sciences Institute. ROUGEL

specifically measures the longest common subsequence be-
tween the candidate sentences and reference sentences.

CIDEr: Consensus-based Image Description Evaluation
(CIDEr) is a metric used to evaluate the quality of image
descriptions. The key idea behind CIDEr is that human con-
sensus can serve as a proxy for image description quality.
First, the term frequency inverse document frequency (TF-
IDF) weighting is used to give more importance to words that
are discriminative. Then, the cosine similarity between the n-
grams of the candidate sentences and the reference sentences
is calculated. Next, the n-gram similarities for different n are
combined into a single score using a geometric mean. A final
CIDEr score is computed by averaging the CIDEr scores for
each reference sentence. An important aspect of CIDEr is that
it attempts to capture both the relevance and the saliency of
the words in the generated caption.

SPICE: Semantic Propositional Image Caption Evaluation
(SPICE) is an automated metric proposed for evaluating image
captioning. It is a relatively new evaluation method, aiming
to better capture the semantic information in image caption-
ing. Unlike traditional n-gram-based evaluation methods like
BLEU, ROUGE, METEOR, and CIDEr, which mainly evalu-
ate through calculating the lexical overlap between reference
annotations and generated annotations, SPICE analyzes at a
higher level (i.e., the semantic level). SPICE first converts
captions into a series of semantic tuples, each representing a
specific semantic concept, such as objects, attributes, relations,
etc. Then, an F-score is used to measure the degree of match
between the generated annotation and the reference annotation.
S∗
m: It is an average of BLEU-4, METEOR, ROUGEL, and

CIDEr. It is defined as follows:

S∗
m=

1

4
(BLEU-4 +METEOR+ROUGEL+CIDEr). (14)

C. Experimental Settings and Training Details

Dataset Splitting: To ensure a fair comparison with com-
pared methods [9], [10], [14]–[17], [40], [41], each dataset
is also randomly shuffled and divided into three parts for
training, validation, and testing by the ratio of 80%, 10%,
and 10%, respectively. To minimize the impact of random
splits, we conduct five experiments on each RSIC dataset. For
each dataset, we perform five experiments with five different
random splits. The best and worst results are excluded, and
the remaining outcomes are averaged to obtain more reliable
and solid results.

Feature Extraction: The size of each input image is set
to 224 × 224 pixels. For the region features, we employ the
ResNet-152 pre-trained on ImageNet whose last fully-connect
layer is removed. This process results in a feature map with
dimensions of 7×7×512. Then we flatten the feature map into
a matrix of size 49×512 (i.e., N = 49 and d1 = 512). For the
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CLIP image embedding, we utilize the pre-trained CLIP with
ViT-B/32 backbone to extract the Class token with dimensions
of 768 (i.e., d2 = 768).

Model Setting and Training: Following [14], [39], we
employ a sequential Transformer framework with B = 3
identical layers and use h = 8 parallel attention layers in the
multi-head attention mechanism. According to prior research
experience [13], [40], the dilation rates of the dilated con-
volutions in the encoder are set as 2, 4, and 8 in sequence.
For the region features, the number of groups J is set to 8
and each head focuses on λ = 6 groups. In terms of text
representation, a start token <bos> and an end token <eos>
are added before and after each ground truth sequence. During
the training phase, the input of the decoder is the ground truth
sequence. However, during the inference period, only the start
token <bos> needs to be input into the decoder. The word
embedding dimension is configured to be 512. The maximum
sequence length for positional encoding is 128, and there is
a constraint of a maximum output sequence length of 20. We
set the batch size to 50 and use the Adam Optimizer with
β1 = 0.9, β2 = 0.98 to optimize the model parameters. The
initial learning rate is set to 1. To prevent overfitting, dropout
is applied with a probability of 0.1 after each attention and
FFN layer. The hidden dimension of each FFN layer is set to
2048. Furthermore, we define patience to monitor the model’s
performance on the validation set and decide whether to halt
the training prematurely. All experiments are conducted on an
NVIDIA GeForce RTX 3090 with PyTorch version 1.10.0.

During the cross entropy training process, we adopt the
learning rate scheduling strategy [19], which incorporates a
warm-up operation comprising 10,000 iterations. We save the
model with the highest CIDEr score on the validation set as
the initialization for the subsequent training phase or inference.
When the patience reaches to 5, the focus of training shifts
towards CIDEr optimization and the learning rate is fixed at
5e − 6. In both the optimization and decoding phases, we
employ a beam size of 5 to generate candidate sequences.

Compared Methods: To evaluate the effectiveness of the
proposed MG-Transformer, we compare the proposed MG-
Transformer with several state-of-the-art methods as below:

(1) mRNN [9] and mLSTM [9] adopt the vanilla CNN-
RNN framework, with different CNNs as their encoders and
different RNNs (naive RNN, LSTM) as the decoders.

(2) Soft-attention [10] and Hard-attention [10] introduce
hard attention and soft attention [32] into the CNN-RNN
framework, respectively.

(3) FC-Att+LSTM [15] and SM-Att+LSTM [15] integrate
low-level features and high-level attribute features based on
the attribute attention mechanism. The results are from [17].

(4) SAT(LAM) [16] and Adaptive (LAM) [16] adopt pre-
dicted categories’ word embedding vectors to guide the cal-
culation of attention masks, which helps filter out redundant
image features.

(5) Word–Sentence framework [41] consists of a word
extractor and a sentence generator. The word extractor employs
various CNNs and loss functions to extract as many words
as possible from RSIs. And the sentence generator utilizes

different Transformer structures to generate sentences. Here,
we present the best results.

(6) GVFGA+LSGA [17] introduces a Global Visual
Feature-Guided Attention to filter out redundant visual in-
formation and designs a Linguistic State-Guided Attention to
optimize the fusion of visual and text features.

(7) RASG [40] fuses multiscale visual features extracted by
the ESP module. It designs a recurrent attention mechanism to
capture high-level attentive maps and devises a semantic gate
to merge the semantic information from two LSTMs.

(8) MLAT [14] integrates multiscale visual features from
different convolutional layers, which are fed into a Trans-
former. It employs LSTMs to aggregate information from all
encoder layers and feeds it into the Transformer decoder to
generate sentences.

(9) M2 Transformer [39] embeds the prior knowledge of re-
lationships between objects into self-attention in Transformer
encoder.

(10) PKG-Transformer [58] first enriches the object and
scene features by leveraging the object-object and scene-scene
relationship. Then, it integrates the scene-object relationship
into the Transformer encoder as prior knowledge.

To validate the effectiveness of each component and facil-
itate comparison with other RSIC methods, we establish a
strong baseline with a standard Transformer encoder and
the meshed decoder. The encoder and decoder of the baseline
also consist of three identical layers. In particular, we will
place emphasis on comparing with state-of-the-art multiscale
methods (i.e., RASG and MLAT). They also employ ResNet-
152 as the CNN backbone. Their patiences are also set to 5.

D. Comparison With Other Methods

We present the comparison results with the compared
methods in Table I - Table III, which correspond to Sydney-
Captions, UCM-Captions, and RSICD datasets, respectively.
All the results are reported as percentages (%).

As can be seen from the three tables, our method achieves
superior performance over other comparison methods on al-
most all metrics for the three datasets. For RSICD, our method
is only slightly lower in terms of BLEU-1 and ROUGEL

compared to the best results. Specifically, it attains the highest
scores on image captioning metrics (i.e., CIDEr and SPICE)
and the overall metric (i.e., S∗

m). Next, we provide a detailed
analysis of the experimental results on each dataset.

Results on Sydney-Captions: The mRNN and mLSTM
adopt the vanilla CNN-RNN framework to achieve inferior
CIDEr scores (i.e., 32.20% and 37.20%). Benefiting from
the attention mechanism, Soft-attention and Hard-attention
achieve significant performance. FC-Att+LSTM, SM-
Att+LSTM, SAT(LAM), Adaptive(LAM), Word–Sentence,
and GVFGA+LSGA further improve the performance by
incorporating attribute information (such as label information
and global information) into the attention mechanism.
Further, RASG and MLAT have achieved better performance
by fusing multiscale visual information. Compared to the
better-performing MLAT, the strong baseline integrates the
contributions of all encoder layers to improve CIDEr by
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TABLE I
COMPARISON RESULTS ON SYDNEY-CAPTIONS. ALL RESULTS ARE REPORTED AS PERCENTAGE (%). BLEU-1, BLEU-2, BLEU-3, BLEU-4, METEOR,
ROUGEL , CIDER, AND SPICE ARE DENOTED AS B1, B2, B3, B4, M, R, C AND S, RESPECTIVELY. THE SYMBOL “-” INDICATES THAT THE RESULT IS

NOT REPORTED BY THE PAPER.

Methods B1 B2 B3 B4 M R C S S∗
m

mRNN [9] 51.30 37.50 20.40 19.30 18.50 - 32.20 - -
mLSTM [9] 54.60 39.50 22.30 21.20 20.50 - 37.20 - -

Soft-attention [10] 73.22 66.74 62.23 58.20 39.42 71.27 249.93 - 104.71
Hard-attention [10] 75.91 66.10 58.89 52.58 38.98 71.89 218.19 - 95.41
FC-Att+LSTM [15] 73.83 64.40 57.01 50.85 36.38 66.89 224.15 39.51 94.57
SM-Att+LSTM [15] 74.30 65.35 58.59 51.81 36.41 67.72 234.02 39.76 97.49

SAT(LAM) [16] 74.05 65.50 59.04 53.04 36.89 68.14 235.19 40.38 98.32
Adaptive(LAM) [16] 73.23 63.16 56.29 50.74 36.13 67.75 234.55 42.43 97.29
Word–Sentence [41] 78.91 70.94 63.17 56.25 41.81 69.22 204.11 - 92.85 -
GVFGA+LSGA [17] 76.81 68.46 61.45 55.04 38.66 70.30 245.22 45.32 102.31

RASG [40] 79.83±2.34 73.71±3.10 68.70±3.89 64.21±4.51 41.29±1.64 72.03±2.57 250.18±11.50 - 106.93±4.99
MLAT [14] 83.23±1.35 77.88±3.99 72.98±4.11 68.29±3.93 43.81±2.11 75.99±2.90 277.24±6.06 - 116.32±2.96

M2 Transformer [39] 82.25±1.65 76.19±1.12 71.04±1.83 66.30±1.83 44.20±1.49 75.21±1.98 275.44±13.65 43.64±1.74 115.29±2.69
PKG-Transformer [58] 83.17±1.02 77.83±2.31 72.84±1.88 68.24±1.39 45.28±0.86 77.06±1.54 284.76±10.84 44.05±1.05 118.83±2.51

Baseline 83.11±0.89 77.57±2.14 72.78±2.95 68.38±3.46 44.58±2.29 76.11±2.03 289.79±19.78 43.93±1.68 120.23±5.46
MG-Transformer 86.68±1.07 80.87±2.47 75.88±3.54 71.22±4.36 47.70±3.11 79.70±3.86 327.76±14.49 48.09±1.93 131.37±5.19

TABLE II
COMPARISON RESULTS ON UCM-CAPTIONS. ALL RESULTS ARE REPORTED AS PERCENTAGE (%). BLEU-1, BLEU-2, BLEU-3, BLEU-4, METEOR,
ROUGEL , CIDER, AND SPICE ARE DENOTED AS B1, B2, B3, B4, M, R, C AND S, RESPECTIVELY. THE SYMBOL “-” INDICATES THAT THE RESULT IS

NOT REPORTED BY THE PAPER.

Methods B1 B2 B3 B4 M R C S S∗
m

mRNN [9] 60.10 50.70 32.80 20.80 19.30 - 42.80 - -
mLSTM [9] 63.50 53.20 37.50 21.30 20.30 - 44.50 - -

Soft-attention [10] 74.54 65.45 58.55 52.50 38.86 72.37 261.24 - 106.24
Hard-attention [10] 81.57 73.12 67.02 61.82 42.63 76.98 299.47 - 120.23
FC-Att+LSTM [15] 81.02 73.30 67.27 61.88 42.80 76.67 337.00 48.67 129.59
SM-Att+LSTM [15] 81.15 74.18 68.14 62.96 43.54 77.93 338.60 48.75 130.76

SAT(LAM) [16] 81.95 77.64 74.85 71.61 48.37 79.08 361.71 50.24 140.19
Adaptive(LAM) [16] 81.7 75.1 69.9 65.4 44.8 78.7 328.0 50.3 129.23
Word–Sentence [41] 79.31 72.37 66.71 62.02 43.95 71.32 278.71 - 114.00
GVFGA+LSGA [17] 83.19 76.57 71.03 65.96 44.36 78.45 332.70 48.53 130.37

RASG [40] 82.05±1.38 77.47±1.30 73.86±1.32 70.85±1.26 47.40±0.36 78.49±1.02 326.01±3.73 - 130.69±1.48
MLAT [14] 90.35±1.04 86.86±1.31 83.68±1.65 80.77±2.11 54.57±1.61 87.67±1.46 383.15±17.52 - 151.54±5.60

M2 Transformer [39] 88.90±1.32 85.98±1.49 82.74±1.51 80.89±1.36 51.13±2.21 84.45±2.61 418.41±17.27 53.43±2.43 155.97±4.36
PKG-Transformer [58] 90.48±1.15 87.04±1.09 84.10±1.33 81.39±1.67 54.66±2.05 86.57±2.00 427.49±12.37 57.01±2.40 162.53±3.52

Baseline 86.65±1.27 82.54±1.63 79.27±1.85 76.40±2.02 50.55±1.58 82.74±1.57 401.54±5.25 52.87±1.70 152.81±2.60
MG-Transformer 91.28±1.23 88.11±2.29 85.37±2.17 82.95±2.08 56.01±1.66 88.77±2.06 448.39±4.08 58.39±1.32 169.03±2.05

TABLE III
COMPARISON RESULTS ON RSICD. ALL RESULTS ARE REPORTED AS PERCENTAGE (%). BLEU-1, BLEU-2, BLEU-3, BLEU-4, METEOR, ROUGEL ,

CIDER, AND SPICE ARE DENOTED AS B1, B2, B3, B4, M, R, C AND S, RESPECTIVELY. THE SYMBOL “-” INDICATES THAT THE RESULT IS NOT
REPORTED BY THE PAPER.

Methods B1 B2 B3 B4 M R C S S∗
m

mRNN [9] 45.58 28.25 18.09 12.13 15.69 31.26 19.15 - 19.56
mLSTM [9] 50.57 32.42 23.19 17.46 17.84 35.02 31.61 - 25.48

Soft-attention [10] 67.53 53.08 43.33 36.17 32.55 61.09 196.43 -
Hard-attention [10] 66.69 51.82 41.64 34.07 32.01 60.84 179.25 - 76.54
FC-Att+LSTM [15] 66.71 55.11 46.91 40.59 32.25 57.81 257.63 46.73 97.07
SM-Att+LSTM [15] 66.99 55.23 47.03 40.68 32.55 58.02 257.38 46.87 97.16

SAT(LAM) [16] 67.53 55.37 46.86 40.26 32.54 58.23 258.50 46.36 97.38
Adaptive(LAM) [16] 66.64 54.86 46.76 40.70 32.30 58.43 260.55 46.73 98.00
Word–Sentence [41] 72.40 58.61 49.33 42.50 31.97 62.60 206.29 - 85.84
GVFGA+LSGA [17] 67.79 56.00 47.81 41.65 32.85 59.29 260.12 46.83 98.48

RASG [40] 69.57±1.39 57.24±0.42 47.10±0.52 39.75±0.60 34.00±0.24 64.48±0.42 247.09±3.44 - 96.33±1.10
MLAT [14] 69.46±1.06 59.20±1.25 51.02±1.32 44.69±1.30 33.95±0.50 61.81±1.22 269.75±3.70 - 102.55±1.39

M2 Transformer [39] 68.44±1.20 56.57±1.25 48.10±1.25 41.56±1.26 32.69±1.01 59.12±0.93 258.58±3.68 45.43±0.92 97.99±1.67
PKG-Transformer [58] 69.67±1.74 58.30±1.39 50.45±1.13 44.31±1.24 33.32±1.31 60.78±1.30 274.01±2.88 46.91±0.79 103.11±1.31

Baseline 66.42±0.84 55.10±1.29 46.98±1.57 40.71±1.85 31.29±0.50 58.07±0.85 246.12±9.18 43.88±0.57 94.05±3.10
MG-Transformer 70.27±1.54 59.80±0.24 52.08±0.46 46.01±0.65 34.17±0.52 62.27±0.93 285.10±5.01 48.07±0.98 107.89±1.78

4.53% and S∗
m by 3.36% (relative improvements, same

below). The proposed MG-Transformer exceeds the MLAT
by 18.22% on CIDEr and 12.94% on S∗

m, validating the
effectiveness of our approach. In addition, object-based
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TABLE IV
ABLATION STUDIES ON SYDNEY-CAPTIONS. ALL RESULTS ARE REPORTED AS PERCENTAGE (%). BLEU-1, BLEU-2, BLEU-3, BLEU-4, METEOR,

ROUGEL , CIDER, AND SPICE ARE DENOTED AS B1, B2, B3, B4, M, R, C AND S, RESPECTIVELY. DC, SC, AND GGA REPRESENT DILATED
CONVOLUTION, SEMANTIC CORRELATION MODULE, AND GLOBAL GROUPING ATTENTION, RESPECTIVELY.

DC SC GGA B1 B2 B3 B4 M R C S S∗
m

% % % 83.11±0.89 77.57±2.14 72.78±2.95 68.38±3.46 44.58±2.29 76.11±2.03 289.79±19.78 43.93±1.68 120.23±5.46
✓ % % 84.15±1.64 78.89±1.83 73.74±2.81 69.00±3.02 45.98±2.44 78.56±3.03 291.86±17.98 45.43±1.39 120.83±6.57
✓ ✓ % 86.06±1.46 80.29±2.77 75.18±3.61 70.33±4.10 46.40±2.74 78.69±2.37 307.59±10.88 45.85±1.52 125.97±5.85
✓ ✓ ✓ 86.68±1.07 80.87±2.47 75.88±3.54 71.22±4.36 47.70±3.11 79.70±3.86 327.76±14.49 48.09±1.93 131.37±5.19

TABLE V
ABLATION STUDIES ON UCM-CAPTIONS. ALL RESULTS ARE REPORTED AS PERCENTAGE (%). BLEU-1, BLEU-2, BLEU-3, BLEU-4, METEOR,

ROUGEL , CIDER, AND SPICE ARE DENOTED AS B1, B2, B3, B4, M, R, C AND S, RESPECTIVELY. DC, SC, AND GGA REPRESENT DILATED
CONVOLUTION, SEMANTIC CORRELATION MODULE, AND GLOBAL GROUPING ATTENTION, RESPECTIVELY.

DC SC GGA B1 B2 B3 B4 M R C S S∗
m

% % % 86.65±1.27 82.54±1.63 79.27±1.85 76.40±2.02 50.55±1.58 82.74±1.57 401.54±5.25 52.87±1.70 152.81±2.60
✓ % % 87.00±1.51 82.85±1.64 79.50±1.66 76.58±1.60 50.95±0.52 82.94±1.54 402.38±6.09 53.91±0.25 153.21±2.44
✓ ✓ % 90.74±1.72 87.54±2.47 84.83±3.02 82.32±3.51 54.29±2.16 87.39±1.60 435.77±11.73 56.23±2.39 164.94±7.25
✓ ✓ ✓ 91.28±1.23 88.11±2.29 85.37±2.17 82.95±2.08 56.01±1.66 88.77±2.06 448.39±4.08 58.39± 1.32 169.03±2.05

TABLE VI
ABLATION STUDIES ON RSICD. ALL RESULTS ARE REPORTED AS PERCENTAGE (%). BLEU-1, BLEU-2, BLEU-3, BLEU-4, METEOR, ROUGEL ,
CIDER, AND SPICE ARE DENOTED AS B1, B2, B3, B4, M, R, C AND S, RESPECTIVELY. DC, SC, AND GGA REPRESENT DILATED CONVOLUTION,

SEMANTIC CORRELATION MODULE, AND GLOBAL GROUPING ATTENTION, RESPECTIVELY.

DC SC GGA B1 B2 B3 B4 M R C S S∗
m

% % % 66.42±0.84 55.10±1.29 46.98±1.57 40.71±1.85 31.29±0.50 58.07±0.85 246.12±9.18 43.88±0.57 94.05±3.10
✓ % % 66.53±0.80 55.14±0.61 47.02±1.41 40.78±1.83 31.74±0.40 58.62±0.65 252.90±6.32 44.41±0.77 96.01±2.20
✓ ✓ % 69.51±0.88 58.61±1.22 51.58±1.45 45.25±1.53 33.12±0.36 61.74±0.47 281.64±4.11 47.92±0.17 105.69±1.62
✓ ✓ ✓ 70.27±0.54 59.80±0.24 52.08±0.46 46.01±0.65 34.17±0.52 62.27±0.93 285.10±5.01 48.07±0.98 107.89±1.78

methods (i.e. M2 Transformer and PKG-Transformer) have
also achieved significant performance. Compared to the state-
of-the-art PKG-Transformer, CIDEr and S∗

m have increased
by 15.10% and 10.55%, respectively. This demonstrates the
superiority of the proposed MG-Transformer.

Results on UCM-Captions: Consistent with the results
from Sydney-Captions, the mRNN and mLSTM achieve infe-
rior CIDEr scores. With the incorporation of attention mech-
anisms and attribute information into the vanilla CNN-RNN
framework, models such as Soft-attention, Hard-attention, FC-
Att+LSTM, and SM-Att+LSTM achieve significant CIDEr and
S∗
m scores. Our strong baseline outperforms the best multiscale

method MLAT by 4.80% on CIDEr and 0.84% improve-
ment on S∗

m. Additionally, the proposed MG-Transformer also
improves 17.03% on CIDEr and 11.54% on S∗

m. And the
proposed MG-Transformer exceeds the state-of-the-art PKG-
Transformer by 4.89% on CIDEr and 4.00% on S∗

m.
Results on RSICD: From Table III, it is evident that

among the compared methods, MLAT achieved the best re-
sults on most of the metrics, with scores of 269.75% and
102.55% on CIDEr and S∗

m, respectively. Unlike the results
from the other two datasets, the performance of the strong
baseline is inferior to that of MLAT but in close proximity
to RASG. The proposed MG-Transformer exceeds MLAT by
5.69% on CIDEr and 5.21% on S∗

m. Furthermore, the pro-

posed MG-Transformer outperforms the state-of-the-art PKG-
Transformer by 4.05% in terms of CIDEr and 4.64% in terms
of S∗

m.

E. Ablation Study

In this section, we further conduct extensive ablation exper-
iments on the three RSIC datasets to evaluate the effectiveness
of the dilated convolution (DC), SC module, and GGA in the
proposed MG-Transformer. The results of these experiments
are presented in Table IV - Table VI. Moreover, we validate
the effectiveness of λ and CLIP, and their results are shown
in Figure. 3 and Table VII, respectively.

Effectiveness of DC, SC, and GGA: The experimental
results for the three datasets have similar variations. Taking
Table IV as an example, the baseline achieves an average
score of 289.79% for CIDEr and 120.23% for S∗

m. Next,
we add three additional modules one by one and conduct a
performance evaluation. The first component is the dilated
convolution, which is responsible for extracting multiscale
visual features from the raw data. By adding this module,
we find that the CIDEr score and S∗

m score are increased by
0.71% and 0.50%, respectively. The results demonstrate that
the inclusion of the module slightly improves the performance
compared to the baseline.
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(a) (b)

Fig. 3. Variation on METEOR (a) and CIDEr (b) with different λ values.

TABLE VII
EXPERIMENTAL RESULTS OF MG-TRANSFORMER WITH VIT-IMAGENET (V-I) OR VIT-CLIP (V-C) AND RESNET-IMAGENET (R-I) OR RESNET-CLIP

(R-C) ON SYDNEY-CAPTIONS, UCM-CAPTIONS, AND RSICD. ALL RESULTS ARE REPORTED AS PERCENTAGE (%). BLEU-1, BLEU-2, BLEU-3,
BLEU-4, METEOR, ROUGEL , CIDER, AND SPICE ARE DENOTED AS B1, B2, B3, B4, M, R, C AND S, RESPECTIVELY.

Datasets Backbone B1 B2 B3 B4 M R C S

Sydney-Captions
R-I & V-I 84.80±1.90 78.88±2.68 73.78±3.32 69.16±3.68 45.60±1.95 77.31±1.80 310.90±19.14 44.93±3.11
R-I & V-C 86.68±1.07 80.87±2.47 75.88±3.54 71.22±4.36 47.70±3.11 79.70±3.86 327.76±14.49 48.09±1.93
R-C & V-C 85.64±2.56 80.35±3.16 75.60±3.92 71.06±4.39 47.34±2.34 79.68±2.81 326.04±13.57 47.41±3.68

UCM-Captions
R-I & V-I 88.68±2.10 84.83±2.22 81.69±2.34 78.92±2.36 52.57±0.62 84.68±1.55 417.66±5.52 55.26±1.42
R-I & V-C 91.28±1.23 88.11±2.29 85.37±2.17 82.95±2.08 56.01±1.66 88.77±2.06 448.39±4.08 58.39±1.32
R-C & V-C 91.50±0.58 88.32±0.85 85.65±1.06 83.16±1.23 55.67±0.54 88.51±0.65 446.28±3.84 57.78±0.45

RSICD
R-I & V-I 68.59±0.38 57.57±0.31 49.68±0.41 43.54±0.52 32.75±0.60 60.25±1.18 265.73±10.78 45.55±1.20
R-I & V-C 70.27±0.54 59.80±0.24 52.08±0.46 46.01±0.65 34.17±0.52 62.27±0.93 285.10±5.01 48.07±0.98
R-C & V-C 69.88±0.99 59.25±0.67 51.38±0.62 45.18±0.69 33.84±0.29 61.78±0.29 279.07±3.47 47.60±0.50

The second component is the SC module, which integrates
global and local information to obtain refined features. The
introduction of this module further enhances the performance
of the model. The CIDEr score and the S∗

m score are further
increased by 5.39% and 4.25%, respectively. The performance
gain achieved by incorporating the module highlights its
importance in our method. More detailed ablation studies of
the universal adaptability of the semantic correlation module
are provided in the supplementary material.

Finally, we add the GGA, which enhances the ability to
capture local information by introducing a grouping mech-
anism within self-attention. This module also significantly
contributed to the overall performance improvement. The
incorporation of GGA enhances the CIDEr score by 6.56%
and the S∗

m score by 4.29%. The ablation analysis reveals that
the module contributes significantly to the improved results.

Based on the above analysis, we can draw the following
conclusions: the dilated convolution, the SC module, and the
GGA all contribute to the performance improvement of the
baseline model.

Effectiveness of λ: In the proposed MG-transformer, there
is a critical hyperparameter, λ, which corresponds to the
number of groups each head focuses on in GGA. In all of our
experiments, region features are divided into L = 8 groups.
To observe the impact of different λ values in the captioning
process, we conducted experiments with λ = 1, 2, 4, 6, and

8 on UCM-Captions. To visually illustrate the impact of λ,
we present the variation curves of METEOR and CIDEr in
Figure. 3.

In the Figure. 3, we can observe two key points: (1) The best
results are obtained when λ = 6. Smaller values of λ lead to
inadequate learning of contextual information by GGA, while
larger values result in redundancy across heads. (2) The less
favorable results are obtained when λ = 8 (each head in GGA
focuses on all region features).

Effectiveness of CLIP: To validate the effectiveness of
CLIP, we conduct experiments by replacing ResNet-ImageNet
with ResNet-CLIP, and substituting ViT-CLIP with ViT-
ImageNet, respectively. The experiments are shown in Ta-
ble VII. We can observe that integrating ResNet-CLIP with
ViT-CLIP outperforms the combination of ResNet-ImageNet
and ViT-ImageNet, while achieving results comparable to
merging ResNet-ImageNet and ViT-CLIP.

F. Qualitative Analysis and Attention Visualization

Qualitative Analysis: To intuitively demonstrate the per-
formance of the proposed MG-Transformer, qualitative results
of the baseline, the state-of-the-art PKG-Transformer, and
the proposed MG-Transformer, coupled with human-annotated
ground truth (GT) captions are presented in Figure. 4. Ob-
viously, the captions generated by our MG-Transformer are
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GT: Many buildings and green trees are
around a stadium.
Baseline: A playground is near several
buildings and green trees.
PKG-Transformer: Many green trees
are around a stadium.
MG-Transformer: Several buildings
and green trees are around a stadium.

GT: Four airplanes scattered at the airport.
Baseline: Three different kinds of airplanes
are stopped at the airport.
PKG-Transformer: Two airplanes are
stopped at the airport.
MG-Transformer: Four airplanes scattered
at the airport.

GT: Many buildings and green trees with
a playground are in a school.
Baseline: Some buildings and green trees
are in a school.
PKG-Transformer: Many buildings and
green trees are in a school.
MG-Transformer: Many buildings and
green trees are in a school with a
playground.

GT: Many buildings and green trees are
around a playground and a baseball field.
Baseline: Many buildings and green
trees are around a playground.
PKG-Transformer: Many buildings
and green trees are around a playground.
MG-Transformer: Many buildings and
green trees are around a playground and
a baseball field.

GT: Some buildings are in a school with a
playground and a baseball field.
Baseline: Many buildings and green trees
are in a school.
PKG-Transformer: Many buildings and
green trees are around a school.
MG-Transformer: A playground with a
baseball field in a school with many green
trees.

GT: A villa with grey roofs is
surrounded by trees and lawn in the
sparse residential area
Baseline: A villa with lawn surrounded
is in the sparse residential area.
PKG-Transformer: A villa with lawn
surrounded is in the sparse residential
area.
MG-Transformer: A villa with grey
roofs is surrounded by trees and lawn in
the sparse residential area.

GT: Many mobile homes arranged
haphazardly in the mobile home park and
some roads go through this area.
Baseline: Many mobile homes are closed
to each other in the mobile home park.
PKG-Transformer: Many mobile homes
are closed to each other in the mobile
home park.
MG-Transformer: Many mobile homes
arranged in lines in the mobile home park
and some roads go through this area.

GT: An airplane with blue fuselage is
stopped at the airport
Baseline: A white airplane is stopped at
the airport.
PKG-Transformer: An airplane is
stopped at the airport.
MG-Transformer: An airplane with
blue fuselage is stopped at the airport.

Fig. 4. Examples of captions generated by the baseline, PKG-Transformer, and the proposed MG-Transformer, as well as the corresponding ground truth
captions. Some detailed and accurate words are marked in blue. And the words that are inconsistent with the image content are marked in red.

more accurate and comprehensive compared to the baseline
and PKG-Transformer.

Taking the first subfigure with four different scale air-
planes in Figure. 4 as an example, the baseline and PKG-
Transformer inaccurately describe “three airplanes” and “two
airplanes”, while the proposed MG-Transformer accurately
describe “Four airplanes”. This fact provides evidence of the
MG-Transformer’s ability to address the multiscale problem.
Further, taking the second subfigure with multiscale objects in
Figure. 4 as an example, the baseline and PKG-Transformer
describe “many buildings”, “green trees” and “a playground”,
but miss the important object “a baseball field”. In contrast,
the proposed MG-Transformer provides a more comprehensive
description, aligning effectively with GT captions. This indi-
cates that the captions generated by our MG-Transformer are
more accurate and comprehensive compared to the baseline
and PKG-Transformer.

Attention Visualization: To better showcase the efficacy
of our MG-Transformer in tackling multiscale challenges,

we delve into the heatmaps of the encoding layers of the
MG-Transformer, illustrated in Figure. 5, to identify the at-
tended objects. We conduct comparisons by removing GGA
(baseline+DC) and both GGA and DC (baseline) from the
MG-Transformer to generate the heatmaps for comparison.
Taking the first subfigure as an example, the RSI (top left)
reveals a scene featuring a swimming pool, tennis courts, cars,
buildings, and plants. In the baseline model, the three encoding
layers primarily focuses on objects of similar scale, such as
tennis courts and plants, while neglecting others. By utilizing
dilated convolutions with diverse dilation rates, baseline+DC
effectively captures objects across multiple scales, including
tennis courts, the swimming pool, cars, and other objects.
Through the integration of the grouping mechanism, the
MG-Transformer, which builds upon baseline+DC, not only
narrows down the focus of the model but also enhances its
precision in attending to multiscale objects.

We also visualize the evolutions of attended image regions
along the caption generation processes for the baseline and
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Multiscale Objects:
basketball courts
playground
buildings
plants

Multiscale Objects:
tennis courts
swimming pool
cars
buildings
plants
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Fig. 5. Comparison of heatmaps generated by all encoding layers of baseline, baseline+DC, and MG-transformer. The degree of attention is indicated by the
color intensity: red signifies a higher degree of attention, while blue represents a lower degree of attention.

MG-Transformer in Figure. 6. Each word pays more attention
to the red pixels, which represent a larger attention weight.

Figure. 6 shows many “buildings”, “trees” and a “play-
ground” in a “school”. The baseline not only inaccurately
depicts the scene category as a “commercial area” but also
misses an important object “playground”. In contrast, our
method provides a sentence that aligns perfectly with the GT
captions. Moreover, both the baseline and our method generate
the word “trees”. However, our method demonstrates a more
accurate correspondence between the word “trees” and the cor-
responding attention map. This once again demonstrates that
our method can generate more accurate and comprehensive
captions than the baseline. The results of qualitative analysis
and attention visualization are included in the supplementary
material.

G. Complexity Analysis

This section provides a brief analysis of the computational
complexity of the proposed MG-Transformer. The computa-
tional complexity is mainly concentrated in the Transformer
framework, with the most time-consuming operation being the
GGA (O(2N2d+3Nd)). First, computing the headi accord-
ing to Eq. (7) requires O(2N2D+3ND2+3ND) cost. Then,
computing GGA(X) via Eq. (8) costs O(Nd2 +Nd). There-
fore, the computational cost of the proposed MG-Transformer

TABLE VIII
COMPARISON BETWEEN THE STRONG BASELINE, MLAT AND THE

PROPOSED MG-TRANSFORMER ON THE NUMBER OF PARAMETERS AND
FLOPS. THE SYMBOL “-” INDICATES THAT THE RESULT IS NOT REPORTED

BY THE PAPER.

Method Parameters FLOPs

MLAT [14] 149.77M -
Baseline 30.43M 1.34G

MG-Transformer 38.56M 1.60G

is O(N2), which is consistent with the computational com-
plexity of the standard Transformer and the strong baseline.
Baseline, the state-of-the-art multiscale method MLAT, and the
proposed MG-Transformer all adopt the Transformer frame-
work. Table VIII presents the number of model parameters
and the number of floating-point operations (FLOPs). Among
them, MLAT has the highest number of parameters. The
Baseline and the proposed MG-Transformer exhibit a similar
number of parameters and FLOPs. Compared to MLAT, our
approach reduces the number of model parameters while
achieving the best performance.

V. CONCLUSION

In this paper, we present a novel MG-Transformer frame-
work that facilitates multiscale cross-modal interactions to
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GT: Many buildings and
green trees are in a school
with a playground.

Baseline: Many buildings and some green trees are in a commercial area.

Many buildings and some green trees

are in a commercial area.

MG-Transformer: Many buildings and green trees are in a school with a playground.

Many buildings and green trees are

in a school with a playground.

Fig. 6. The visualization of attended image regions along the caption generation processes for the baseline and our MG-Transformer. Pixels with larger
attention weights are highlighted in red, while those with lower attention weights are highlighted in blue.

provide more precise captions for RSIC. We introduce the pre-
trained CLIP model to extract the image embedding with pre-
aligned image-text information as supplementary knowledge.
An SC module is devised to integrate region features and the
CLIP image embedding through an attention gate. Moreover,
we design a GGA mechanism that incorporates a grouping
mechanism into self-attention to enhance its local modeling
ability. Experimental results and analysis demonstrate the
effectiveness of the proposed MG-Transformer. In our future
work, we will further explore the integration of multiscale
features with Transformer.
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